The SPE has split the former "Management & Information" technical discipline into two new technical discplines:
- Management
- Data Science & Engineering Analytics
SPE Disciplines
Geologic Time
Publisher
Concept Tag
Genre
Industry
Oilfield Places
File Type
The SPE has split the former "Management & Information" technical discipline into two new technical discplines:
Layer | Fill | Outline |
---|
Theme | Visible | Selectable | Appearance | Zoom Range (now: 0) |
---|
Fill | Stroke |
---|---|
Mozambique is located in southeast Africa with an extensive area of 306,642 sq miles (approximately 800,000 sq km). The major cities include the capital city of Maputo, Beira, Matola, Nampula, Quelimane, Tete, Nacala, and Pemba. The terrain varies from lowlands to high plateau with a climate range from tropical to subtropical. Mozambique has an enormous energy potential, which provides the country with favourable means to fulfil its domestic and regional energy needs for southern Africa and beyond. The latest discoveries of natural gas, estimated at 277 trillion m3, puts Mozambique in a very privileged position both in the region and in the world.
Short Abstract Shale oil and gas in East Africa, with new ideas on reserves and possible synergies with renewables Shale oil and gas production have lately revolutionized the oil and gas industry as a real "game-changer", especially in the US. This has prompted many companies and governments to search for these unconventionals with successes in the UK, Poland and Argentina. These unconventionals do often occur onshore in places, where there is no conventional hydrocarbon production, thus enabling the local government or companies to have a new energy source, which is especially valid in Onshore East Africa. New drilling technologies, which combine shale and geothermal drilling/production, are now being developed. Now it is possible to drill/produce both unconventionals and geothermal from a single well.Gas and oil could be produced from the central pipe, and hot water from the outer tubing, thereby reducing development cost for both methods. In Tanzania a study was performed to look at unconventional oil and gas resources in sedimentary basins. A lot of data on Karoo geology, maturity, TOC's and volumetrics will be presented. In general, one needs a thick sedimentary basin with a lot of shales, good maturity and TOC values, and a fairly unfaulted basin to prevent seismicity when fracking. In East Africa and Southern Africa at large only the Karoo sediments of Permian/Triassic age are a suitable candidate for large shale oil/gas reserves. The possible large Karoo shale gas development in South Africa is a good example. A large heavy oilfield at surface in Madagascar proves an oil source in the Karoo. In S.Kenya and also on Pemba oil shows are known, with a unknown Pre-Jurassic source. Preliminary resource calculations in Tanzania indicate possible resources in place of 50-200 Tcf of gas for the Selous basin, comparable in size with the South-African Karoo Basin. The depth of the source rocks make gas the most likely hydrocarbon phase. One has to note that calculating unconventional resources is much more complicated than with conventional resources, since the adsorbed gas (or oil) needs to be calculated from core or log analyses. An onshore well could also text the synergies with geothermal drilling. Recently, TPDC in Tanzania has started a new evaluation, based on new mapping, rock analyses and maturity studies, into the shale oil and gas potential. Altogether, shale gas (or oil) could be an interesting incentive for onshore Tanzania and East Africa at large.