The SPE has split the former "Management & Information" technical discipline into two new technical discplines:
- Management
- Data Science & Engineering Analytics
Feature
SPE Disciplines
Geologic Time
Conference
Theme
Author
Concept Tag
Genre
Geophysics
Industry
Oilfield Places
Technology
Source
File Type
The SPE has split the former "Management & Information" technical discipline into two new technical discplines:
Layer | Fill | Outline |
---|
Theme | Visible | Selectable | Appearance | Zoom Range (now: 0) |
---|
Fill | Stroke |
---|---|
Abaltusov, Nikolay (Weatherford) | Tensin, Sergey (Weatherford) | Zibrov, Mikhail (Weatherford) | Emshanov, Anatoliy (Weatherford) | Khayvarin, Eldar (Gazprom-neft) | Sharipov, Rafael (Gazprom-neft)
Abstract Rotary Steerable Systems (RSS) are, in general, more efficient versus Positive Displacement Motors (PDM) when drilling the wells under complicated geological conditions. Thousands of operations, performed all over the world, clearly confirm this statement (Wardana, R, 2019). However, this paper will demonstrate that there are geological features where the main advantage of RSS โ drilling with constant rotation โ is not efficient and may result in emergency situations. Specifically, under such geological conditions it is necessary to drill in Tazovskoye field which is developed by extended reach horizontal and multilateral wells. This paper will cover integrated engineering solutions, which made it possible to overcome geological challenges to reduce the costs of drilling extended reach multilateral wells by a deliberate engineered change from RSS to PDM application. The approach was confirmed in 11 multilateral wells, drilled with the use of PDM. In this case the length of each horizontal hole totaled 2000 meters and more. An all-time record was achieved in Russia in terms of the length of horizontal wells, drilled with PDM motors without using oil-based mud: a horizontal section 2,520 meters in length with DDI โ 6.72, ERD โ 2.67 was drilled.
Most of the currently known fields of the West Siberian oil and gas province are characterized by a complex geological structure and the presence of reserves difficult to recover. The development of these complex features will help maintain declining production from discovered and developed fields in Western Siberia. Efficient development of deposits of the Bazhenov formation and Achimov formation is possible only if there are objective ideas about the geological structure of these deposits. It seems important to link the features of the formation of these objects at the junction of the Jurassic and Cretaceous periods. Based on the results of the detailed well log correlation of the entire well stock for the Nong-Eganskoye field, this article will show what processes took place during the formation of the Bazhenov-Achimov rock complex and their results. It has been established that the currently observed sharp "jumps" of the Bazhenov formation itself on the correlation schemes and seismic sections are the result of keyboard block subsidence along consedimentary faults. The analysis of structural and thickness maps of the anomalous section of the Bazhenov formation, the Bazhenov formation itself, and the Achimov compensation pack, showed almost identical outlines of the configurations of the positive or negative structures of the three studied objects, which indicate the tectonic nature of their formation. The use of such research methods as successive paleoprofiling and reduction of to one thickness made it possible to substantiate the formation of the Bazhenov-Achimov rock complex by tectonic movements. Genesis of this complex has a block character of multispeed subsidence of adjacent block. Undisturbed character bedding of rocks deals with different-velocity subsidence of the seabed in the same time interval within the blocks.
Kempf, K. V. (Zarubezhneft JSC) | Shkarin, D. V. (Zarubezhneft JSC) | Akhmetov, M. F. (Giprovostokneft JSC) | Sherbakov, D. V. (Giprovostokneft JSC) | Pariychuk, N. V. (Giprovostokneft JSC) | Dudarenko, A. S. (Giprovostokneft JSC)
The experience of drilling the horizontal and subhorizontal wells in the Achimov deposits interval demonstrates a high risk of complications and accidents. This relates to the complexity of geological factors, anomalously high reservoir pressure and narrow safe density interval. At the present time, there is no consensus on the reasons of borehole wall disturbances in the Achimov rock interval. Some researchers consider a mechanical impact of drill pipes on borehole walls, while the others reckon among the main factors the tripping of borehole walls, their physical and chemical interaction with the flush liquid, the mechanical impact of drilling tool and the stress state of the rocks. The friction forces between the rock particles are also emphasized as the reason of borehole wall disturbances. One of the reasons for the strength degradation of clay material is the process drill mud penetration, which causes the emergence of the disjoining pressure in the rock and the borehole wall disturbance. Thus, notwithstanding a major number of researches related to the borehole wall strengthening in the Achimov deposits interval, this issue remains unresolved and requires a further research. The article presents the plan of actions reducing the risk of complications and accidents while drilling the horizontal wells at Lutseyakhoye field. The first stage is geomechanical modelling of borehole wall stability, which allows to define a window of drill mud safe density throughout the whole wellbore. The second stage is updating the hydraulic program defining the borehole cleaning from drill cuttings and the selection of the best rheological parameters. The third stage is working out drilling mud composition to drill in the Achimov deposit intervals. While assessing the non-productive drilling time (NPT) for the Achimov deposits of the adjoining fields, it was established that the average NPT is 23 days. The complex approach to accident-free drilling of horizontal wells made it possible to reduce NPT based on geological factors to 3 days.
Abstract Western Siberia is a unique petroleum basin with exclusive geological objects. Those objects allow us to test various methods of sequence stratigraphy, systematization and evaluation approaches for reservoir characterization of deep-water sediments. Different methods have potential to decrease geological uncertainty and predict distribution and architecture of deep-water sandstone reservoir. There are many different parameters that could be achieved through analysis of clinoform complex. Trajectories of shelf break, volume of sediment supply and topography of basin influence on architecture of deep-water reservoir. Based on general principles of sequence stratigraphy, three main trajectories changes shelf break might be identified: transgression, normal regression and forced regression. And each of them has its own distinctive characteristics of deepwater reservoir. However, to properly assess the architecture of deepwater reservoir and potential of it, numerical characteristics are necessary. In our paper, previously described parameters were analyzed for identification perspective areas of Achimov formation in Western Siberia and estimation of geological uncertainty for unexplored areas. In 1996 Helland-Hansen W., Martinsen O.J. [5] described different types of shoreline trajectory. In 2002 Steel R.J., Olsen T. [11] adopted types of shoreline trajectory for identification of truncation termination. O. Catuneanu (2009) [1] summarize all information with implementation basis of sequence stratigraphy. Over the past decade, many geoscientists have used previously published researches to determine relationship between geometric structures of clinoforms and architecture of deep-water sediments and its reservoir quality. Significant amount of publications has allowed to form theoretical framework for the undersanding sedimentation process and geometrical configuration of clinoforms. However, there is still no relationship between sequence stratigraphy framework of clinoroms and reservoir quality and its uncertainty, which is necessary for new area evaluation.
Elisheva, O. V. (Tyumen Petroleum Research Center LLC) | Lazar, E. L. (Tyumen Petroleum Research Center LLC) | Safonov, V. G. (Tyumen Petroleum Research Center LLC) | Kulik, A. P. (RN-Uvatneftegas) | Zhestkov, D. N. (Rosneft Oil Company)
Rosneft Oil Company focuses on research work at the West Siberian basin. The territories are characterized by a low hydrocarbon potential, but they are of interest to the company in the future. Such territories include the peripheral regions of the basin, where the main problem for the Jurassic reservoirs is the forecast of their phase saturation. This problem does not allow the company to actively invest in prospecting and exploration work in such areas. In order that, Rosneft Oil Company to be able to increase the company's hydrocarbon resource base by opening new hydrocarbon deposits in the peripheral regions of the West Siberian basin, it is necessary to understand the mechanism of formation of deposits of different phase composition. For example, small Yuzhno-Venikhyartskoye gas-condensate field was discovered in 2014 on the border of the northern districts of the Uvat region and Khanty-Mansiysk autonomous district. The phase composition of hydrocarbons is uncharacteristic for territories where oil deposits are usually discovered. The article considers the results of the studying the nature of the formation of gas-condensates in the peripheral territories of West Siberian basin on the example of Yuzhno-Venikhyartskoye gas-condensate field. The authors briefly describe geological, geodynamic, geochemical, thermobaric and tectonic conditions that are necessary for the formation and existence of gas-condensate deposits at depths of up to 2 km in the peripheral territories of the West Siberian basin. There is no doubt that understanding the formation mechanism of gas-condensate deposits in the peripheral territories of sedimentary basins will allow the company to expand its prospects for prospecting not only in the northern part of the Uvat region, but also in the southern regions of the Khanty-Mansiysk autonomous district.
Abstract The approaches of building and methods of using the digital core are currently developing rapidly. The use of these methods makes it possible to obtain petrophysical information by non-destructive methods quickly. Digital rock physics includes two main stages: constructing models and modeling various physical processes on the obtained models. Our work proposes using deep learning methods for mineral and pore space segmentation instead of classical methods such as threshold image processing. Deep neural networks have long been able to show their advantages in many areas of computer vision. This paper proposes and tests methods that help identify different minerals in images from a scanning electron microscope. We used images of rocks of the Achimov formation, which are arkoses, as samples. We tested various deep neural networks such as LinkNet, U-Net, ResUNet, and pix2pix and identified those that performed best in segmentation.
Varavva, Artem Igorevich (Gazpromneft STC) | Apasov, Renat Timergaleevich (Gazpromneft STC) | Samolovov, Dmitry Alexeyevich (Gazpromneft STC) | Elesin, Artem Viktorovich (Gazpromneft STC) | Apasov, Gaidar Timergaleevich (Gazpromneft STC) | Voyevoda, Evgeniya Vladimirovna (Gazpromneft STC) | Reshetnikov, Dmitry Anatolevich (Gazpromneft STC) | Senachin, Maxim Arkadievich (Gazpromneft STC)
Abstract The paper describes the experience of building a full-field integrated model (PK1 reservoir) of the Tazovskoye field, including a model of the reservoir, wells, and a gathering network, taking into account the external transportation system. In order to integrate the features of the field, such as the simultaneous development of a thin oil rim and a gas cap, high growth rates of the gas-oil ratio, oil wells - both ESP-operated and flowing, algorithms and tools have been developed, which are discussed in the paper. The results of the integrated model runs are given, main features of the solutions are highlighted.
Abstract Production monitoring is essential not only for fiscal applications, but also for production optimization and efficient reservoir management. So, production measurements must be both accurate and frequent enough, revealing a consistent trend of well operating parameters. This is especially important for reservoirs of complex geology, like oil rim reservoirs in poorly consolidated sandstone formations with presence of aquifer and gas cap drive. Production monitoring can be implemented with different technologies, accuracy of monitoring is however affected by different factors like gas content, viscosity and temperature of produced fluids. Paper presents pragmatic approach and analysis of applicability of different measurement technologies: compact two-phase separator and two different multiphase metering technologies applied at oil wells of Tazovskoye field operated by LLC "Meretoyakhaneftegaz", which production conditions are very challenging due to high gas volume fraction of the produced fluid, high viscosities and low temperatures.
Abstract The complex interbedded heterogeneous reservoirs of the Severo-Komsomolskoye field are developed by horizontal wells in which, as part of the pilot project's scope, autonomous inflow control devices (AICD) are installed to prevent early coning and gas breakthroughs in long horizontal sections and reduce sand production, which is a problem aggravated by an extremely low mechanical strength of the terrigenous deposits occurring in the Pokur formation of the Cenomanian stage in this area. The zones produced through AICDs are separated by swell packers. The issue of AICD effectiveness is discussed in the publications by Solovyev (2019), Shestov (2015), Byakov (2019) and some others. One of the methods used for monitoring horizontal sections with AICDs is production logging (PLT). However, due to the complexity of logging objectives, the use of conventional logging techniques makes the PLT unfeasible, considering the costs of preparing and carrying out the downhole operations. This paper provides some case studies of the Through-Barrier Diagnostics application, including passive spectral acoustics (spectral acoustic logging) and thermohydrodynamic modelling for the purpose of effective estimation of reservoir flows behind the liner with AICDs installed and well integrity diagnostics. As a result of the performed diagnostics, the well completion strategy was updated and optimised according to the log interpretation results, and one well intervention involving a cement squeeze with a straddle-packer assembly was carried out.
Brednev, Philipp (Gazpromneft STC) | Elesin, Mikhail (Gazpromneft STC) | Berezovskiy, Yuri (Gazpromneft STC) | Metelkin, Denis (Gazpromneft GEO) | Volkov, Georgy (Gazpromneft GEO) | Firsin, Maksim (Gazpromneft NNG) | Mukminov, Iskander (Gazpromneft GEO)
This article deals with the issues related to development of petroleum resources of Western Siberia and looks at one of the most promising development targets - reservoirs of the Achimov Formation. In particular, it discusses geological features of the Achimov rocks, and the difficulties faced by oil companies in development of the Achimov reservoirs due to their low economic viability if traditional approaches to well construction are applied. To make development of such reservoirs economical, new and non-trivial solutions need to be looked for. One of the most promising of them is considered to be multi-hole wells the construction of which allows oil companies to improve the Capex to cumulative production ratio. At the pre-FEED stage the project, geological, hydrodynamic and geomechanical models of the reservoir were built, the most efficient borehole parameters and trajectories were defined, and the optimal hydraulic frac design, number of stages and parameters were selected. The article describes specifics of the work carried out when preparing for pilot tests of the technology, such as: a. requirements for defining the well profile and selecting the optimal lifting capacity of the drilling rig, b. selection of a suitable complexity level for the double-hole well design among those considered which meets the drilling requirements, c. performance of bench tests to confirm operability of the TAML-3 equipment. Further, the article describes results of drilling, completing and commissioning the first double-hole well at the Vyngayakhskoye field, discusses the issues faced when using the completion equipment at the TAML-3 level, and the lessons learned from this project. It also presents results of putting the double-hole well on-stream and compares its production characteristics with those of single-hole horizontal wells drilled within the same well cluster. The experience gained has shown that building the discussed type of wells is technically feasible, and there is a wide potential for improving efficiency of this work through respective organizational and technical measures.