Feature
Source
Geologic Time
Journal
Conference
Publisher
Author
Concept Tag
Country
Industry
Oilfield Places
Technology
File Type
Layer | Fill | Outline |
---|
Theme | Visible | Selectable | Appearance | Zoom Range (now: 0) |
---|
Fill | Stroke |
---|---|
Formation damage caused by drilling-fluid invasion, production, or injection can lead to positive skin factors and affect fluid flow by reducing permeability. When mud filtrate invades the formation surrounding a borehole, it will generally remain in the formation even after the well is cased and perforated. This mud filtrate in the formation reduces the effective permeability to hydrocarbons near the wellbore. It may also cause clays in the formation to swell, reducing the absolute permeability of the formation. In addition, solid particles from the mud may enter the formation and reduce permeability at the formation face.
Drilling fluids serve to balance formation pressures while drilling to ensure wellbore stability. They also carry cuttings to the surface and cool the bit. These primary considerations do not include well productivity concerns. A growing recognition of the importance of drilling-induced formation damage has led to the use of drill-in fluids (fluids used to drill through the pay zone) that minimize formation damage. This page discusses the formation damage that may be associated with various types of drilling fluids.
To quantify formation damage and understand its impact on hydrocarbon production, one must have reasonable estimates of the flow efficiency or skin factor. Several methods have been proposed to evaluate these quantities for oil and gas wells. Multirate tests can be conducted on both oil and gas wells. In these tests, several stabilized flow rates, qi, are achieved at corresponding stabilized flowing bottomhole pressures, pwf. The simplest analysis considers two different stabilized rates and pressures.
There are many possible causes of formation damage. In addition to the numerous sources identified in separate articles (see See Also section below), other, less common causes include emulsions and sludges, wettability alteration, bacterial plugging, gas breakout, and water blocks. The presence of emulsions at the surface does not imply the formation of emulsions in the near-wellbore region. Most often, surface emulsions are a result of mixing and shearing that occur in chokes and valves in the flow stream after the fluids have entered the well. It is uncommon to have emulsions and sludges form in the near-wellbore region without the introduction of external chemicals.[1]The
Since the most common use of matrix acidizing is the removal of formation damage, it is important to understand the nature of the damage that exists so that an appropriate treatment can be designed. Well testing and well test analysis generate a skin factor and well completion efficiency. This is insufficient alone for formation damage diagnosis. Well performance analysis has provided a beneficial tool to identify the location and thickness of damage at flow points in the near wellbore area. Models of flow into perforations and gravel-packed tunnels provide a way to relate the location and severity of damage to the completion procedure that preceded it.
Swelling clays, although relatively abundant in shales, do not occur as commonly in producing intervals. Thus, formation damage problems with swelling clays are not nearly as common as those associated with fines migration. The most common swelling clays found in reservoir rock are smectites and mixed-layer illites. It was earlier thought that much of the water and rate sensitivity observed in sandstone permeability was caused by swelling clays. However, it is now well accepted that the water-sensitive and rate-sensitive behavior in sandstones is more commonly the result of fines migration and only rarely of swelling clays.
When cement is bullheaded into the annulus to displace mud, the differential pressure between the cement and the formation fluid can lead to a significant loss of cement filtrate into the formation. If, however, large volumes of cement filtrate invade the rock, the possibility of formation damage exists. Depending on the specific composition of the cement and its pH, the filtrate may be supersaturated with calcium carbonate and calcium sulfate. As the cement filtrate invades the formation and reacts with the formation minerals, its pH is reduced from 12 to a pH buffered by the formation minerals. This rapid change in pH can result in the formation of inorganic precipitates such calcium carbonate and calcium sulfate.
Fines migration is a recognized source of formation damage in some production wells, particularly in sandstones. Direct evidence of fines-induced formation damage in production wells is often difficult to come by. Although most other forms of formation damage have obvious indicators of the problem, the field symptoms of fines migration are much more subtle. Indirect evidence such as declining productivity over a period of several weeks or months is the most common symptom. This reduction in productivity can usually be reversed by mud-acid treatments.