Paradigm Shift in Reducing Formation Damage: Application of Potassium Formate Water Based Mud in Deep HPHT Exploratory Well.

Al-salali, Yousef Zaid (Kuwait Oil Company) | Ayyavoo, ManiMaran (Kuwait Oil Company) | Al-ibrahim, Abdullah Reda (Kuwait Oil Company) | Al-Bader, Haifa (Kuwait Oil Company) | Duggirala, Vidya Sagar (Kuwait Oil Company) | Subban, Packirisamy (Kuwait Oil Company)


This paper discusses the outstanding performance achieved in a deep HPHTJurassic formation drilled using Potassium Formate based fluid. This paper alsodescribes methodology adopted for short term testing and stimulation of anexploratory well and finally the field results.

Drilling and completion of deep Jurassic formations in the state of Kuwaitis generally done with Oil Base Mud (OBM) weighted with Barite. Duringdrilling, barite causes significant formation damage to the carbonates withnatural fractures and it is essential to stimulate the well to evaluate thereal reservoir potential. Formation damage is usually treated with matrix acidstimulation, however barite does not respond to acid. Kuwait Oil Company (KOC)was in search for an alternative drilling fluid causing relatively lessformation damage and also responds to remedial actions. Potassium Formate brinewith suitable weighting agent to achieve sufficient mud weight around 16ppg wasselected for field trial in one of the exploratory wells. Formate based brineis a high-density Water Base Mud (WBM) which maintains rheological stability athigh temperature and minimizes formation damage.

Last 2,000 feet in 6" hole section of 18,000 feet well was drilled using15.9 ppg Potassium Formate WBM. During short term testing, acid wash alone wassufficient to remove the formation damage and productivity has tripled which isunlikely in case of wells drilled with OBM.

This case study shows how Potassium Formate based mud enhanced theproductivity and reduced the testing time and cost. Based on the successfulfield test results, it is planned to drill future Jurassic deep formation withPotassium Formate based fluids in future.