Modeling Dynamic Behaviors of Complex Fractures in Conventional Reservoir Simulators

Xu, Yifei (University of Texas at Austin) | Yu, Wei (Texas A&M University) | Sepehrnoori, Kamy (University of Texas at Austin)



Field data have shown the decline of fracture conductivity during reservoir depletion. In addition, refracturing and infill drilling have recently gained much attention as efficient methods to enhance recovery in shale reservoirs. However, current approaches present difficulties in efficiently and accurately simulating such processes, especially for large-scale cases with complex hydraulic and natural fractures.

In this study, a general numerical method compatible with existing simulators is developed to model dynamic behaviors of complex fractures. The method is an extension of an embedded discrete-fracture model (EDFM). With a new set of EDFM formulations, the nonneighboring connections (NNCs) in the EDFM are treated as regular connections in traditional simulators, and the NNC transmissibility factors are linked with gridblock permeabilities. Hence, manipulating block permeabilities in simulators can conveniently control the fluid flow through fractures. Complex dynamic behaviors of hydraulic fractures and natural fractures can be investigated using this method.

The proposed methodology is implemented in a commercial reservoir simulator in a nonintrusive manner. We first present one synthetic case study in a shale-oil reservoir to verify the model accuracy and then combine the new model with field data to demonstrate its field applicability. Subsequently, four field-scale case studies with complex fractures in two and three dimensions are presented to illustrate the applicability of the method. These studies involve vertical- and horizontal-well refracturing in tight reservoirs, infill drilling, and fracture activation in a naturally fractured reservoir. The proposed approach is combined with empirical correlations and geomechanical criteria to model stress-dependent fracture conductivity and natural-fracture activation. It also shows convenience in dynamically adding new fractures or extending existing fractures during simulation. Results of these studies further confirm the significance of dynamic fracture behaviors and fracture complexity in the analysis and optimization of well performance.