Application of an Innovative Drilling Simulator Set Up to Test Inhibitive Mud Systems for Drilling Shales

Konate, Nabe (University of Oklahoma) | Ezeakacha, Chinedum Peter (University of Oklahoma) | Salehi, Saeed (University of Oklahoma) | Mokhtari, Mehdi (University of Louisiana at Lafayette)



Wellbore instability is caused by the radical change in the mechanical strength as well as chemical and physical alterations when exposed to drilling fluids. A set of unexpected events associated with wellbore instability in shales account for more than 10% of drilling cost, which is estimated to one billion dollars per annum. Understanding shale-drilling fluid interaction plays a key role in minimizing drilling problems in unconventional resources. The need for efficient inhibitive drilling fluid system for drilling operations in unconventional resources is growing. This study analyzes different drilling fluid systems and their compatibility in unconventional drilling to improve wellbore stability.

A set of inhibitive drilling muds including cesium formate, potassium formate, and diesel-based mud were tested on shale samples with drilling concerns due to high-clay content. An innovative high-pressure high temperature (HPHT) drilling simulator set-up was used to test the mud systems. The results from the test provides reliable data that will be used to capture more effective drilling fluid systems for treating reactive shales and optimizing unconventional drilling.

This paper describes the use of an innovative drilling simulator for testing inhibitive mud systems for reactive shale. The effectiveness of inhibitive muds in high-clay shale was investigated. Their impact on a combination of problems, such high torque and drag, high friction factor, and lubricity was also assessed. Finally, the paper evaluates the sealing ability of some designed lost circulation material (LCM) muds in a high pressure high temperature environment.

  Country: North America > United States (1.00)
  Industry: Energy > Oil & Gas > Upstream (1.00)
  Oilfield Places: