Successful ASP Pilot in Mature Active Water Reservoir

Samanta, Supriyo (ONGC) | Jain, Adarsh K (ONGC) | Biswas, Mrinmoy (ONGC) | Hanotia, Ankit (ONGC) | Mavoori, Ravisantoshkumar (ONGC) | Kumar, Rajesh (ONGC)

OnePetro 

Abstract

Reservoirs which produce under active water drive offer a significant uncertainty towards implementation of Chemical EOR processes. This paper describes a successful pilot testing of ASP process in a clastic reservoir which is operating under strong aquifer drive. The field has ~ 30 years of production history. The objective of the pilot was to understand response of ASP process in a mature reservoir, which is operating under active edge water drive. The build-up permeability of the reservoir is 2-8 Darcy with viscosity~ 50 cP. Salient key observations like production performance, incremental oil gain, polymer breakthrough etc. are discussed in this paper after completion of the pilot.

On the basis of laboratory study and simulation, ASP pilot was implemented in the field in 2010.The pilot was designed with single inverted five spot pattern and one observation well. The pilot envisaged injection of 0.3 pore volume (PV) Alkali-Surfactant-Polymer (ASP) slug, 0.3 PV graded polymer buffer followed by 0.4PV chase water. The pilot was meticulously monitored for production performance and breakthrough of chemicals. All the pilot producers have more than 20 years of production history. Base oil rate and water cut were fixed before start of the pilot, on the basis of test data which was used to monitor pilot performance. Interwell Tracer Test (IWTT) was conducted before starting of ASP injection so as to understand sweep in the pilot area. In addition, quality of injection water and chemical concentration in ASP slug was checked regularly to ensure best quality.

Significant response of the pilot was observed within 15 months of the start of the pilot which was published in 2012. This paper aims to describe the learning and conclusion after successful completion of the pilot. ~40-50% jump in oil rate was observed during the ASP injection period which sustained for 12-18 months. However preferential breakthrough of ASP slug in one of the producer impacted the incremental oil gain. The preferential breakthrough of polymer was due to presence of high permeability streaks which was rectified by profile modification job. In addition, strong aquifer movement was experienced during ASP injection which leads to rise in water cut of a pilot well. However, the pilot well was restored through water shutoff jobs. After completion of ASP and mobility buffer, a cumulative incremental oil ~28000 m3 was obtained. Cumulative incremental oil gain is in line with simulation studies prediction. 12-14% decrease in water cut was observed which sustained for ~ 6-18 months. Regular monitoring of produced fluid indicated breakthrough of polymer and alkali in 2-3 producers. During the pilot, produced fluid handling issues like tough emulsion formation, lift malfunctioning etc. was not observed. These collective observation indicated success of the ASP pilot project.

There are very few case histories of successful ASP pilot implementation are available, in which the reservoirs has been operating under active aquifer drive. Learning of this ASP project can be taken forward for expansion of ASP flood and also designing of ASP pilot/commercial projects for analogous reservoirs.