New Modified Plane of Weakness Method Enables Drilling Horizontal Wells Successfully in Ordos Basin, China

Tong, Fangchao (Yanchang Petroleum) | Tang, Mingming (Yanchang Petroleum) | Chen, Gang (Yanchang Petroleum) | Wang, Ningbo (Yanchang Petroleum) | Liu, Peng (Schlumberger) | Yan, Gongrui (Schlumberger) | Lin, Wei (Schlumberger)

OnePetro 

Abstract

Drilling horizontal wells in YB gas field in Ordos Basin presents significant challenges due to severe wellbore instabilities problems in drilling through Permian Lower Shihezi and Upper Shanxi formations, where laminated shales overlies with sand and coal seam. In first phase of horizontal wells drilling, most wells encountered severe wellbore instabilities including pack-off, stuck-pipe, over-pull, drilling pipe lost in hole and even side track. Post-well analysis showed that these horizontal wells instabilities mainly occurred in Permian Lower Shihezi and Upper Shanxi formation where most cavings and drilling events (stuck-pipe, over-pull) were observed. In contrast, vertical exploration wells have no such instability issues in same interval. To analyze and understand the mechanism of wellbore instability issue and provide optimal mud weight and better drilling practice to reduce the risk of wellbore instabilities, an anisotropic wellbore stability modeling using Plane-of-Weakness (PoW) failure criterion was carried out in this study. The PoW failure criterion is adopted to compute the onset of rock shear sliding and/or fracture along a weak plane (bedding or fracture) and identify the potential wellbore instability risk in drilling through anisotropic rock formations. The influence of bedding orientation, rock anisotropic elastic and strength properties, and wellbore trajectory on the wellbore stability are all included in the model.

This paper describes the process and workflow of conducting PoW wellbore stability modeling for YB field wellbore drilling. The proposed drilling parameters (stable mud weight) from the modeling and its application and improvement for next wells drilling, are also included. The analysis showed that the laminated shale and coal intervals were very prone to fail when well drilled with deviation between 600 to 850. The stable mud weight computed from PoW for drilling through these intervals is 1.40-1.45 g/cc, where as it is 1.20-1.25 g/cc from conventional isotropy wellbore stability model, which was not enough to keep wellbore stable. Based on results from PoW modeling, drilling mud weight scheme was updated and applied to another 3 horizontal wells planned at nearby location. All these three wells were drilled and completed safely without severe wellbore instability issue. In these wells’ 216mm (8.5 in) section, wellbore instability related non-productive time (NPT) was reduced about 11.5 days per well and section time was reduced about 26 days per well.

This PoW modeling was first time applied in wellbore stability analysis for horizontal well drilling at Ordos Basin and the results are satisfied and encouraged. The insights provided in this paper suggests that, for drilling in other locations with similar instability challenges, PoW modeling will be a better choice to provide solution and recommendation to ensure drilling safely, improve drilling efficiency and reduce drilling costs.