A New Strategy for Developing Horizontal Well Inner Potential Based on Fiber Optic Distributed Acoustic Sensing Monitoring

Li, Li (CNOOC) | Luo, Qiyuan (CNOOC) | Xiong, Qi (CNOOC)

OnePetro 

Abstract

An optical fiber has been utilized to continuously acquire liquid production profiles in horizontal well in X oilfield. The results obtained from the dynamical monitoring system confirm the time-varying law of the physical property under the condition of high-water flooding, which can serve as the guidelines to explore the potential of remaining oil in high water-cut/high recovery factor oilfield.

Usually, the sound wave shows different propagation speeds in different medium, which is the basic principle of this test. Firstly, optical cable is used for sound wave detection and signal demodulation.Meanwhile, a series of other processes are applied to calculate the sound velocity of mixed medium; Then the volume velocity and holdup of mixed medium for each phase are determined.The measure of liquid-producing profile along the whole horizontal well has been realized in real time. Finally, numerical simulation model considering the time-varying physical properties is established based on the core flooding laboratory experiment. This result will provide guidelines for the exploration of remaining oil in the well.

The results obtained from optical fiber monitoring system during last two years show that 80% of the fluid produced from the 502-meter horizontal well is mainly contributed to the first 90-meter horizontal section. Experimental results of core flooding under excessive water flooding (2000 pore volume) indicate that the permeability is 1.4 times of the original. The results of numerical simulations considering the time-varying physical properties illustrate that there is still internal remaining oil along the horizontal well section. So, the strategy of exploiting potential oil is proposed using an accurate directional water plugging, which will decrease 10% water cut and obtain more recoverable reserves.

Based on the dynamical monitoring results of optical fiber, this paper innovatively provides the strategy of exploiting potential remaining oil in the horizontal wells, which can provide a valuable suggestion for offshore oilfield with high productivity at high water-cut stage.