Development Optimization for Improving Oil Recovery of Cold Production in a Foamy Extra-Heavy Oil Reservoir

Yang, Zhaopeng (PetroChina Research Institute of Petroleum Exploration&Development) | Li, Xingmin (PetroChina Research Institute of Petroleum Exploration&Development) | Chen, Heping (PetroChina Research Institute of Petroleum Exploration&Development) | Ramachandran, Hariharan (The University of Texas at Austin, Hildebrand Department of Petroleum and Geosystems Engineering) | Shen, Yang (PetroChina Research Institute of Petroleum Exploration&Development) | Yang, Heng (China National Oil and Gas Exploration and Development Corporation) | Shen, Zhijun (China National Oil and Gas Exploration and Development Corporation) | Nong, Gong (China National Oil and Gas Exploration and Development Corporation)

OnePetro 

The block M as a foamy extra-heavy oil field in the Carabobo Area, the eastern Orinoco Belt, has been exploited by foamy oil cold production utilizing horizontal wells. The early producing area has been put into production about 10 years, existing problems of productivity declining and produced gas-oil ratio rising. Therefore, the development optimization for the early producing area should be conducted in order to obtain the more profitable oil recovery. A typical foamy oil reservoir simulation model using 5 components was created to understand the remaining oil distribution features. Based on above understandings, technical strategies were proposed for infilling well deployment in the early producing area. Results show that the gravity drainage and gravity differentiation of oil and gas during the cold production of foamy extra-heavy oil from horizontal wells by foam flooding are the main mechanisms for formation of remaining oil. And the influence factors of remaining oil distribution include horizontal well spacing, reservoir thickness, reservoir heterogeneity, interlayer distribution and reservoir rhythm. Thus tor foamy extra-heavy oil CHOP process, the enriched remaining oil area is the place between two adjacent horizontal wells with well spacing of 600m. Therefore, well infilling is an effective measure improving oil recovery factor of cold production, and the well infilling should be implemented as soon as possible to obtain better performance of cold production.