Evaluating the Ellenburger Reservoir for Salt Water Disposal in the Midland Basin: An Assessment of Porosity Distribution Beyond the Scale of Karsts

Sanchez, Taylor (Pioneer Natural Resources) | Loughry, Donny (Pioneer Natural Resources) | Coringrato, Vince (Pioneer Natural Resources)



In the Midland Basin of west Texas, produced water volumes have historically been disposed into shallow intervals (i.e., Grayburg-San Andres). Over the last decade, the rapid growth in unconventional resource development has resulted in a significant increase in the volume of produced water leading to pressure gradient differences between shallow disposal zones and deeper intervals. These conditions have created drilling challenges and have prompted operators to test additional zones suitable for produced water disposal. In recent years, the Early Ordovician Ellenburger (ELBG) reservoir has become an alternative disposal interval to shallower reservoirs.

The Ellenburger Group of west Texas, a prolific producing reservoir, is part of an extensive carbonate system best known for karst development associated with prolonged subaerial exposure and intervals of high secondary porosity in fracture breccias generated by subsequent cave collapse. Many authors have described fracture occurrence and karst-related breccias of the ELBG, both of which impact productivity at the reservoir scale within the fields and make regional correlations particularly challenging. Ellenburger depositional facies have been described by previous workers in equivalent units across west and central Texas, and textural analysis of high-resolution electrical borehole images from recently drilled disposal wells, combined with core observations, shows corresponding porous intervals to be present in the Midland Basin.

This paper describes the generation of a regional model of porosity distribution within the Ellenburger and assesses the important differences in depositional environment and diagenetic history that exist among the internal units of the ELBG that may impact salt water disposal (SWD) well performance. For example, the Upper ELBG is dominated by fracture porosity in breccia fabrics associated with collapsed cave systems, while the Lower ELBG exhibits preserved porosity associated with original depositional textures. The regional model was tested using multiple datasets: image logs, core descriptions, electric logs from more than 400 well penetrations, and injection data from recent well tests. The integration of these datasets has resulted in a suite of maps of the key stratigraphic intervals within the ELBG that offer the greatest potential for disposal. Additionally, the integration of well performance with observed regional geologic trends was used to identify and tier key performance drivers for deep SWD injection performance, resulting in refined performance maps that can be used for strategic placement of deep SWD wells.