Deciphering Injection-Induced Seismicity: A Conceptual Model for Explaining Discrepancies Between Oklahoma and North Dakota Activities

Lima, C. (Independent Researcher) | Lavorante, L. P. (Independent Researcher) | Williams, W. C. (Louisiana State University) | Beisl, C. (UFRJ-COPPE) | Reis, A. F. C. (Petrobras) | Carvalho, L. G. (Petrobras) | Moriss, M. (Paradigm)

OnePetro 

ABSTRACT: This study proposes that a systematic comparison using integrated 3D visualization of all pertinent data (midplate seismicity, geological and geophysical variables) could help in identifying areas vulnerable to injection-induced seismicity in the North American plate. From similar studies of the South American plate in Brazil’s Potiguar basin, it is found that intraplate seismicity occurs at uplifted basin borders (areas over thin, hot, weaker lithosphere) where pre-existing faults are prone to be reactivated by small pressure perturbations. Conversely, central basins (areas over thick, cold, strong lithosphere) are not prone to seismicity. With this model we investigate Oklahoma (Ok) and North Dakota (ND), both intense areas of injection. ND activity, in the central basin, shows no induced seismicity. In contrast, Ok activity, in a regional-scale ravine in the uplifted basin border, has seen a 62.5-fold increase in recent seismicity. Modeling of the Ok region shows reactivation of pre-existing faults with injection pressures of 1.75 MPa (254 psi; 0.7ppg) between 2000-2200m depths, values that agree with wellhead injection pressure field data.

1. INTRODUCTION: THE PROBLEM

A huge increase of seismicity in the tectonically stable U.S. is put into evidence, if we examine the USGS Catalog, 2017 comparing the number of earthquakes of magnitude (Mw) greater or equal to 4 that occurred during 2000-2010 and 2010-2016. For this area, see Fig. 1, we jumped from an average of 6.2 events/yr, during 2000-2010, to an average of 28.8 events/yr, during 2010-2016, roughly a 5-fold increase. For Oklahoma, see Fig. 2, a 62.5-fold increase of seismicity has been observed when comparing these same two periods, including two major events (Mw 5.7, 2011; Mw 5.8, 2016). These recent increases are contemporaneous with the increase in shale production as shown in Figs. 1 and 2. In the stable midcontinent, a roughly 5-fold increase is observed in seismicity during 2010-2016. Again, the increase is contemporaneous with US shale production.