Results from a Pilot Water Flood of the Magwa Marrat Reservoir and Simulation Study of a Sector Model Contribute to Understanding of Injectivity and Reservoir Characterization

Turkey, Laila (KOC) | Hafez, Karam Mohamed (KOC) | Vigier, Louise (Beicip) | Chimmalgi, Vishvanath Shivappa (Kuwait Oil Company) | Dashti, Hameeda Hussain (Kuwait Oil Company) | Datta, Kalyanbrata (KOC) | Knight, Roger (KOC) | Lefebvre, Christian (Beicip-Franlab) | Bond, Deryck John (Kuwait Oil Company) | Al-qattan, Abrar (KOC) | Al-Jadi, Manayer (Kuwait Oil Company) | De Medeiros, Maitre (Beicip) | Al-Kandari, Ibrahim (Kuwait Oil Company)

OnePetro 

A pilot water flood was carried out in the Marrat reservoir in the Magwa Field. The main aim of this pilot was to allow an assessment of the ability to sustain injection, better understand reservoir characteristics. A sector model was built to help with this task.
An evaluation of the injectivity in Magwa Marrat reservoir was performed with particular attention to studying how injectivity varied as injected water quality was changed. This was done using modified Hall Plots, injection logs, flow logs and time lapse temperature logs.
Data acquisition during the course of the pilot was used to better understand reservoir heterogeneity. This included the acquisition of pressure transient and interference data, multiple production and injection logs, temperature logging, monitoring production water chemistry, the use of tracers and a re-evaluation of the log and core data to better understand to role of fractures.
A geological model using detailed reservoir characterization and a 3D discrete fracture network model was constructed. Fracture corridors were derived from fractured lineaments interpreted from different seismic attribute maps:
A sector model of the pilot flood area was then derived and used to integrate the results of the surveillance data. The main output is to develop an understanding of the natural fracture system occurring in the different units of the Marrat reservoir and to characterize their organization and distribution. The lessons learned from this sector modeling work will then be integrated in the Marrat full field study.
The work described here shows how pilot water flood results can be used to reduce risk related to both injectivity and to reservoir heterogeneity in the secondary development of a major reservoir.