Increasing Water Injection Efficiency in the Mature Windalia Oil Field, NW Australia, Through Improved Reservoir Surveillance and Operations

Haghighi, M (The University of Adelaide) | O'Reilly, DI (Chevron Australia Pty Ltd, The University of Adelaide) | Hunt, AJ (Chevron Australia Pty Ltd) | Sze, ES (Chevron Australia Pty Ltd) | Hopcroft, BS (Chevron Australia Pty Ltd) | Goff, BH (Chevron Australia Pty Ltd)

OnePetro 

Abstract

This paper demonstrates how good technical evaluations and focused operational application can enhance the value of a mature asset. The Windalia reservoir underlies Barrow Island (BWI), situated 56 km from the coast of Western Australia, and has produced oil since 1965. Waterflooding commenced shortly after initial production, in 1967, and remains the main drive mechanism in the field today. Throughout the life of this onshore field, water injection and oil production have varied according to asset strategy and economic conditions. In this case study, we share how recent improvements made in the areas of Reservoir Surveillance and Operations activities have increased water injection efficiency and total oil recovery.

Through the use of new methods and workflows, the BWI Sub-Surface team was able to target specific areas of the field to distribute water to in order to increase injection and maximise oil production. For example, new workflows were built with the real-time PI monitoring system to analyse Pressure Fall Off (PFO) tests from each of the 147 waterflood patterns in detail. Capacitance-Resistance-Modeling was also leveraged to guide individual well target injection-rates. Operationally, several projects were also initiated to increase water injection into the right areas of the field.

The new Reservoir Management approach has significantly increased the volume of water being injected into the areas of need, supporting improved levels of oil production. For the first time in almost 10 years, the stream-day water injection rate has exceeded 90,000 bwipd. The results from PFO transient interpretation and pattern balancing proved effective in directing water to low-pressure, high-GOR areas of the field. They also provided valuable information about formation perm-thickness and skin. The phenomenon of water-cycling was also largely avoided, owing to close monitoring of production well tests and water injector transient surveys.

The present work addresses reservoir and operational aspects of Australia's largest active waterflood. The lessons shared are highly applicable to a low oil price environment, as they show how fit-for-purpose and low-cost acquisition of reservoir data can lead to improved field performance.

  Country: Oceania > Australia (1.00)
  Geologic Time: Phanerozoic > Mesozoic (0.46)
  Industry: Energy > Oil & Gas > Upstream (1.00)
  Oilfield Places: