A Multi-Disciplinary Approach for Well Spacing and Treatment Design Optimization in the Midland Basin Using Lateral Pore Pressure Estimation and Depletion Modeling

Levon, Taylor (Fracture ID) | Clemons, Kit (Lario Oil and Gas) | Zapp, Ben (Lario Oil and Gas) | Foltz, Tim (Lario Oil and Gas)


Abstract With a recent trend in increased infill well development in the Midland basin and other unconventional plays, it has been shown that depletion has a significant impact on hydraulic fracture propagation. This is largely because production drawdown causes in-situ stress changes, resulting in asymmetric fracture growth toward the depleted regions. In turn, this can have a negative impact on production capacity. For the initial part of this study, an infill child well was drilled and completed adjacent to a parent well that had been producing for two years. Due to drilling difficulties, the child well was steered to a new target zone located 125 feet above the original target. However, relative to the original target, treatment data from the new zone indicated abnormal treatment responses leading to a study to evaluate the source of these variations and subsequent mitigation. The initial study was conducted using a pore pressure estimation derived from drill bit geomechanics data to investigate depletion effects on the infill child well. The pore pressure results were compared to the child well treatment responses and bottom hole pressure measurements in the parent well. Following the initial study, additional hydraulic fracture modeling studies were conducted on a separate pad to investigate depletion around the infill wells, determine optimal well spacing for future wells given the level of depletion, and optimize treatment designs for future wells in similar depletion scenarios. A depletion model workflow was implemented based on integrating hydraulic fracture modeling and reservoir analytics for future infill pad development. The geomechanical properties were calibrated by DFIT results and pressure matching of the parent well treatments for the in-situ virgin conditions. Parent well fracture geometries were used in an RTA for an analytical approach of estimating drainage area of the parent wells. These were then applied to a depletion profile in the hydraulic fracture model for well spacing analysis and treatment design sensitivities. Results of the initial study indicated that stages in the new, higher interval had higher breakdown pressures than the lower interval. Additionally, the child well drilled in the lower interval had normal breakdown pressures in line with the parent well treatments. This suggests that treatment differences in the wells were ultimately due to depletion of the offset parent well. Based on the modeling efforts, optimal infill well spacing was determined based on the on-production time of the parent wells. The optimal treatment designs were also determined under the same conditions to minimize offset frac hits and unnecessary completion costs. This case study presents the use of a multi-disciplinary approach for well spacing and treatment optimization. The integration of a novel method of estimating pore pressure and depletion modeling workflows were used in an inventive way to understand depletion effects on future development.

Duplicate Docs Excel Report

None found

Similar Docs  Excel Report  more

None found