Optimizing Completion Design and Well Spacing in the Powder River Basin Niobrara Oil Play

Burget, Blake (Kimmeridge Energy) | Dannemiller, Neal (Kimmeridge Energy) | Garrett, Dylan (Kimmeridge Energy) | Kling, Erik (Kimmeridge Energy)

OnePetro 

Abstract A seven-step workflow to help subsurface teams establish an initial thesis for optimal completion design (cluster spacing, proppant per cluster) and well spacing in emerging / under-explored resource plays is proposed and executed for the Powder River Basin Niobrara unconventional oil play. The workflow uses Rate Transient Analysis (RTA) to determine the parameter and then walks the reader through how to sequentially decouple the parameter into its constituent parts (frac height (h), number of symmetrical fractures achieved (nf), permeability (k) and fracture half-length (xf)). Once these terms were quantified for each of the case study wells, they were used in a black oil reservoir simulator to compare predicted verses actual cumulative oil performance at 30, 60, 90,120 & 180 days. A long-term production match was achieved using xf as the lone history match parameter. xf verses proppant per effective half-cluster yielded an R value of > 0.90. 28 simulation scenarios were executed to represent a range of cluster spacing, proppant per cluster and well spacing scenarios. Economics (ROR and/or NPV10/Net Acre) were determined for each of these scenarios under three different commodity pricing assumptions ($40/$2.50, $50/$2.50 and $60/$2.50). An initial thesis for optimal cluster spacing, proppant per designed cluster and well spacing were determined to be 12’, 47,500 lbs and 8-14 wells per section (based on whether or not fracture asymmetry is considered) when WTI and Henry Hub are assumed to be $50 & $2.50 flat.

  Country:
  Industry: Energy > Oil & Gas > Upstream (1.00)

Duplicate Docs Excel Report

Title
None found

Similar Docs  Excel Report  more

TitleSimilaritySource
None found