Response of RC Walls Subjected to Tsunami Debris Collision by Nonlinear Finite Element Analysis

Shibayama, Atsushi (Central Research Institute of Electric Power Industry) | Miyagawa, Yoshinori (Central Research Institute of Electric Power Industry) | Kihara, Naoto (Central Research Institute of Electric Power Industry) | Kaida, Hideki (Central Research Institute of Electric Power Industry)


The damages of the gigantic tsunami that followed the 2011 Great East Japan Earthquake were confirmed on reinforced concrete (RC) structures (Nandasena et al., 2012). Moreover, the damages caused by the tsunami debris collision were confirmed in addition to the damages caused by only the tsunami. Therefore, it is important to clarify the response characteristics of the structure subjected to the tsunami wave force and collision force, and to establish a response evaluation method by numerical analysis. However, the response characteristics of RC structures subjected to two external forces with significantly different timings of actions--namely, wave pressure and collision forces--have not been clarified. Furthermore, to assess the responses of RC structures using numerical analysis, the two different types of superimposing external forces must be considered. However, the applicability of numerical analysis under such external force conditions has not been sufficiently verified. In this research, a large-scale debris collision experiment was first conducted to experimentally investigate the response of an RC vertical wall subjected to the wave pressure and debris collision forces. Next, a reproducibility analysis of the experiment was performed with nonlinear finite element analysis to examine the adaptability of the finite element analysis.