Environmental Impact Study and Experience Sharing of Produced Water Reinjection from Unconventional Gas Development

Chen, Changzhao (State Key Laboratory of Petroleum Pollution Control, CNPC Research Institute of Safety and Environmental Technology) | Li, Xingchun (China University of Petroleum) | Wu, Baichun (State Key Laboratory of Petroleum Pollution Control, CNPC Research Institute of Safety and Environmental Technology) | Zhang, Kunfeng (State Key Laboratory of Petroleum Pollution Control, CNPC Research Institute of Safety and Environmental Technology) | Song, Quanwei (State Key Laboratory of Petroleum Pollution Control, CNPC Research Institute of Safety and Environmental Technology)

OnePetro 

Abstract

The world has seen a peak in unconventional gas development in recent years. Based on the practice of unconventional gas field development domestic in China and abroad, it is risky that the reinjection water may contaminate groundwater in local or adjacent areas during reinjected fluid migration. Ensuring environmental safety of the reinjection is a multi-disciplinary system project. This paper carries out the analysis and shares the experience of China's practice based on the actual cases from the following aspects. 1) The screening of the well location and the formation of the reinjection. 2) The drilling and cementing construction of the reinjection well, which considers the factors such as cementing quality and cement height and casing material. 3) The estimation of the total reinjection capacity, and the factors such as porosity and permeability of the geologic trap and reservoir fracture pressure is considered. 4) The monitoring of well and migration of reinjection fluids. Further environmental risk study of produced water reinjection is presented in this paper, on both sandstone formation of tight sand gas field and carbonate karst formation of shale gas field in China's typical unconventional gas development areas, using laboratory geochemistry experiments and large area geophysical test to obtain seismic data.