Continuous Mineralogical Characterization of the Bakken-Three Forks Formations: New Geological Insights from Hyperspectral Core Imaging

Martini, Brigette (Corescan Inc.) | Bellian, Jerome (Whiting Petroleum Corporation) | Katz, David (Encana Corporation) | Fonteneau, Lionel (Corescan Pty Ltd) | Carey, Ronell (Corescan Pty Ltd) | Guisinger, Mary (Whiting Petroleum Corporation) | Nordeng, Stephan H. (University of North Dakota)

OnePetro 

Abstract

Hyperspectral core imaging studies of the Bakken-Three Forks formations over the past four years has revealed non-destructive, high resolution, spatially relevant insight into mineralogy, both primary and diagenetically altered that can be applied to reservoir characterization. While ‘big’ data like co-acquired hyperspectral imagery, digital photography and laser profiles can be challenging to analyze, synthesize, scale, visualize and store, their value in providing mineralogical information, structural variables and visual context at scales that lie between (and ultimately link) nano and reservoir-scale measurements of the Bakken-Three Forks system, is unique.

Simultaneous, co-acquired hyperspectral core imaging data (at 500 μm spatial resolution), digital color photography (at 50 μm spatial resolution) and laser profiles (at 20 μm spatial and 7 μm vertical resolution), were acquired over 24 wells for a total of 2,870 ft. of core, seven wells of which targeted the Bakken-Three Forks formations. These Bakken-Three Forks data (~5.5 TB) represent roughly 175,000,000 pixels of spatially referenced mineralogical data. Measurements were performed at a mobile Corescan HCI-3 laboratory based in Denver, CO, while spectral and spatial analysis of the data was completed using proprietary in-house spectral software, offsite in Perth, WA, Australia. Synthesis of the spectral-based mineral maps and laser-based structural data, with ancillary data (including Qemscan, XRD and various downhole geophysical surveys) were completed in several software and modelling platforms.

The resulting spatial context of this hyperspectral imaging-based mineralogy and assemblages are particularly compelling, both in small scale micro-distribution as well as borehole scale mineralogical distributions related to both primary lithology and secondary alteration. These studies also present some of the first successful measurement and derivation of lithology from hyperspectral data. Relationships between hyperspectral-derived mineralogy and oil concentrations are presented as are separately derived structural variables. The relationship between hyperspectral-based mineralogy to micro-scale reservoir characteristics (including those derived from Qemscan) were studied, as were relationships to larger-scale downhole geophysical data (resulting in compelling correlations between variables of resistivity and hyperspectral-mineralogy). Finally, basic Net-to-Gross calculations were completed using the hyperspectral imaging data, thereby extending the use of such data from geological characterizations through to resource estimations.

The high-fidelity mineralogical maps afforded by hyperspectral core imaging have not only provided new geological insight into the Bakken-Three Forks formations, but ultimately provide improved well completion designs in those formations, as well as a framework for applying the technology to other important unconventional reservoir formations in exploration and development. The semi-automated nature of the technology also ushers in the ability to consistently and accurately log mineralogy from multiple wells and fields globally, allowing for advanced comparative analysis.

  Country:
  Industry: Energy > Oil & Gas > Upstream (1.00)