A Value Driven Approach for Implementing a Simple and Low-Cost Natural Dump-Flood in an Offshore Environment: Lessons Learned from the First Successful Natural Dump-Flood in Malaysia

Abdulhadi, Muhammad (Dialog Group) | Tran, Toan Van (Dialog Group) | Chin, Hon Voon (Dialog Group) | Jacobs, Steve (Halliburton) | Suggust, Alister Albert (PETRONAS) | Usop, Mohammad Zulfiqar (PETRONAS) | Zamzuri, Dzulfahmi (PETRONAS) | Dolah, Khairul Arifin (PETRONAS) | Abdussalam, Khomeini (PETRONAS) | Munandai, Hasim (PETRONAS) | Yusop, Zainuddin (PETRONAS)



The first successful natural dump-flood in the Malaysian offshore environment provided numerous lessons learned to the operator. The minimal investment necessary for implementing the dump-flood coupled with the lack of recompletion opportunities in the subject wells suggested that direct execution without spending on expensive data gathering activity and extensive reservoir study makes more sense from a business point of view. A similar oil gain compared to a water injection project can be achieved at a significantly lower cost of USD 0.01 to 0.15 million in an offshore environment through dump-flooding.

The existing oil producers in the depleted reservoirs in Field B were originally completed and successfully drained oil from in a high-pressured watered-out reservoir below, making it an ideal dump-flood water source. The dump-flood was initiated by commingling the target and water source reservoir through zone change, allowing water to naturally cross-flow into the pressure depleted target reservoir. Once a memory production logging tool (MPLT) confirmed the cross-flow, the offtake well was monitored to determine the impact of the dump-flood and produce once the pressure was increased. Minimal investment was necessary because the operations were executed using slickline. The reservoir model will be calibrated once the positive impact of dump-flood is realized in the offtake well.

The first natural dump-flood in Reservoir X-2 has successfully produced 0.29 MMstb as of August 2018 with 600 BOPD incremental oil gain. The incremental recovery factor (RF) from the first dump-flood is predicted to be from 5 to 8%. Based on this success, it was decided to replicate the dump-flood project in other depleted reservoirs with Reservoir X-2 as an analog. Four reservoirs were subsequently identified, each with an estimated operational cost of approximately USD 0.01 million and potential incremental reserves of 0.10 to 0.20 MMstb per reservoir. The minimal investment necessary, the idle status of the wells and reservoirs, and the potential incremental reserves suggested that it is more appealing to proceed with implementing the dump-flood without undergoing an extensive and costly reservoir study. With reservoir connectivity being important to the success of dump-flooding, a more cost-effective approach would be to confirm the connectivity by monitoring the offtake well after the dump-flood is initiated. This approach provides more value because the cost of interference or pulse testing is significantly more expensive than the cost of the dump-flood itself while reservoir connectivity was already indicated as likely by geological data (map and seismic). Through a value driven approach, these dump-flood opportunities become more economically viable, allowing the operator to prolong the life of the assets and maximize the field profit.

This paper discusses using a value driven and business approach to implement the dump-flood in a mature field. Valuable insight into the business and technical considerations of implementing dump-floods are described, which are relevant to the industry, especially in today's low margin business climate.