Experimental Measurements of mechanical parameters of Class G cement

Teodoriu, Catalin (Texas A&M University) | Yuan, Zhaoguang (Texas A&M University) | Schubert, Jerome (Texas A&M U at Qatar) | Amani, Mahmood

OnePetro 


The new quest of unconventional resources is the achievement of well integrity which is highlighted by the inadequacy of conventional cementing procedures to provide zonal isolation. High temperatures and pressures or even post-cementing stresses imposed on the cement sheath as a result of casing pressure testing and formation integrity tests set in motion events which could compromise the long term integrity of the cement sheath due to fatigue. Knowledge of the mechanism of fatigue in cement and factors that affect it such as the magnitude of the load, strength and composition of the cement, mechanical properties of the cement and pattern of load cycles are important to achieve a realistic design of a cement system that will be subjected to fatigue loading. Such a design will go a long way to ensure the long term integrity of a well operating under downhole conditions. Finite element investigations help engineers to assess the stress magnitude and evolution for a given well configuration, but when structural calculations for casing-cement system are required, missing input parameters reduce the quality of the results.

In order to have reliable data we performed an extensive experimental work using Class G cement in order to measure the principal parameters for mechanical structural calculations: compressive and tensile strength, Young modulus, Poison Ratio. The data was measured under room conditions and elevated temperature and pressure. The results were also extrapolated for a time period for more than 300 days.

The paper will provide an excellent data inventory for class G cement that can be used when mechanical studies on cement, like finite element studies, are required.