Innovative Field-Scale Application of Injecting Condensate Gas and Recycling Gas into Medium Oil Pool: A Case Study in Sudan

Tang, Xueqing (PetroEnergy E&P Co. Ltd) | Wang, Ruifeng (RIPED, CNPC) | Zhang, Hui (Petro-Energy E&P Co. Ltd)

OnePetro 

This paper illustrates an innovative field-scale application of injecting condensate gas and recycling gas in Jake field, Sudan. This field has two production series, namely AG condensate gas pools and Bentiu oil pool from bottom to up, with the former 3520 ft. below the Bentiu reservoir and 1695 psi of initial reservoir pressure difference. Bentiu pool of Jake field is a medium crude oil (29 API) pool with strong aquifer support. Well productivity was 500 BOPD. Operator intended to inject high-pressure condensate gas into Bentiu pool to increase field output, whereas was confronted with following challenges: 1) injection of condensate gas in an easy-to-operate wellbore configuration; 2) optimization of injection parameters to achieve highest output; 3) suppress aquifer water breakthrough.
Field scale application had been optimized and implemented since 2010:1) High-pressure condensate gas had been injected into two updip crest Bentiu wells in the same well bore, following a huff-and-puff process, well output amounted 4,000 to 13,800 BOPD under natural flow; 2) 1/4 recycling gas volume from compressors was re-injected into 12 downdip wells at controllable pressure to avoid early water breakthrough; 3) The remaining recycling gas was utilized to gas-lift other five updip wells.
Oil producers were reduced from 19 to 7 comparing to original field development plan, while oil rate ascended from 22,000 to 30,000 BOPD, with watercut dropping to 7% from 15%, achieving a high offtake rate of 6%. Reservoir simulation indicated ultimate recovery factor is expected to be over 50% with such full-field gas injection.
Conclusions drawn from field scale injection of condensate gas and recycling gas were as follows:1) condensate gas injection in the same well bore was technically innovative and operationally robust; 2) recycled gas injection into downdip wells helped detain water breakthrough; 3) field scale application had evidenced outstanding success with high output and high offtake rate.