Characterisation and Simulation Insights for Gas Reservoirs with Paleo-Contact

Taggart, Ian (Consultant)

OnePetro 

Abstract

Many gas reservoirs at the appraisal stage exhibit evidence of persistent gas saturations below free water levels (FWL's). The amounts of gas contained here may, under some situations, be a sizable fraction of the gas cap volumes. Many engineers appear poorly equipped to include, and model, paleo gas in simulation models. This often results in paleo gas being simply ignored when development plans are being considered. This is unfortunate because paleo gas upon pressure depletion can expand, displacing brine towards well completions. This means that while some additional gas production may occur from the paleo zone, the risk of water production may be significantly underestimated if paleo gas is simply omitted. This work discusses the evidence for paleo gas and shows that it may be described and incorporated in simple simulation models provided the user avoids some common misconceptions. It is demonstrated that under depletion conditions, paleo gas can be entirely visible to material balance pressure responses, while at the same time increasing the risk of produced water volumes. For higher pressure paleo gas reservoirs the common P on Z diagnostic plots can also provide early trends that are frequently misinterpreted. This work quantifies the curvature that can result in such systems, and shows that simulation models inherently predict the expected curvature in P on Z. The approach taken here is by design simplistic and is applicable to scoping evaluations where the paleo gas volumes could be a significant volumetric uncertainty. Where possible, we indicate where additional, or more rigorous, descriptions can be applied.