Low Sulfate Seawater Injection for Barium Sulfate Scale Control: A Life-of-Field Solution to a Complex Challenge

Jordan, Myles Martin (Nalco Co.) | Collins, Ian Ralph (BP Exploration) | Mackay, Eric James (Heriot-Watt University)

OnePetro 

The injection of seawater into oil-bearing reservoirs to maintain reservoir pressure and improve secondary recovery is a well-established, mature operation. Moreover, the degree of risk posed by deposition of mineral scales to the injection and production wells during such operations has been much studied. The current deep water subsea developments offshore West Africa and Brazil have brought into sharp focus the need to manage scale in an effective way. To this end, the challenge of scale control during the lifecycle of water injection, production and onto produced water reinjection has been reviewed for a number of fields by the authors. 

This outlines the risk assessment process that should be undertaken to select the most economical and effective scale control methodology (which for sulfate-based scale could be seawater injection with scale inhibitor squeeze treatments to maintain production, or sulfate reduction of the injection water - with or without the need to scale inhibitor squeeze). In the case of sulfate reduction, parameters to be investigated include the degree of desulfation required to minimise the scale risk of downhole scale formation, the impact that the degree of fluid mixing will have on the resulting brine (from injection to production) and the impact that the desulfated brine will have on scale control during produced water reinjection.

The paper draws upon a wide range of technical inputs to make scale management decisions including: computer modelling techniques (e.g., deposition models that incorporate the kinetics of sulfate scale formation at low supersaturation ratios); reservoir simulation of fluid mixing and reaction; the resulting produced brine chemistry; laboratory generated coreflood data to assess chemical selection for scale inhibitor squeeze and produced water application; and field results that will demonstrate the impact of the type of injection water source on the long term manageability of such deepwater projects. Finally, the paper outlines in detail the particular issues associated with the full economic assessment of low-sulfate water injection versus full sulfate seawater injection.