Modeling Of Regional Aquifer System Allows Decision On Early Pressure Support To Be Made For The Burgan Minagish Reservoir, Kuwait

Gomez, Ernest (Schlumberger) | Al-Faresi, Fahad A. Rahman (Kuwait Oil Company) | Belobraydic, Matthew Louis (Schlumberger) | Yaser, Muhammad (Schlumberger) | Gurpinar, Omer M. (Schlumberger) | Wang, James Tak Ming (Schlumberger) | Husain, Riyasat (Kuwait Oil Company) | Clark, William (Schlumberger) | Al-Sahlan, Ghaida Abdullah (Kuwait Oil Company) | Datta, Kalyanbrata (KOC) | Mudavakkat, Anandan (KOC) | Bond, Deryck John (Kuwait Oil Company) | Crittenden, Stephen J. (KOC) | Iwere, Fabian Oritsebemigho (Schlumberger) | Hayat, Laila (KOC) | Prakash, Anand (KOC)

OnePetro 

The Burgan Minagish reservoir in the Greater Burgan Field is one of several reservoirs producing from the Minagish formation in Kuwait and the Divided Zone. The reservoir has been produced intermittently since the 1960s under natural depletion. A powered water-flood is currently being planned. The pressure performance of the reservoir has proved hard to explain without invoking communication with other reservoirs. Such communication could be either with other reservoirs through the regional aquifer of through faults to other reservoirs in the Greater Burgan field. Recent pressures are close to the bubble point.

A coarse simulation model of the nearby fields and the regional aquifer was constructed based on data from the fields and regional geological understanding. This model could be history matched to allow all regional pressure data to be broadly matched, a result which supports the view that communication is through the regional aquifer. Using this model to predict future pressure performance suggested that injecting at rates that exceeded voidage replacement by about 50 Mbd could keep reservoir pressure above bubble point. It was recognized that the process of history matching performance was non-unique. This is a particular concern in the context of this study because the model inputs that were varied in the history matching process included aquifer data that was very poorly constrained. To address this problem multiple history matched models were created using an assisted history matching tool. Using prediction results from the range of models has increased our confidence that a modest degree of over-injection can help maintain reservoir pressure.

This paper demonstrates the utility of computer assisted history match tools in allowing an assessment of uncertainty in a case where non-uniqueness was a particular problem. It also emphasizes the importance of understanding aquifer communication when relatively closely spaced fields are being developed.