A Study of Transversely vs Longitudinally Fractured Horizontal Wells ina Moderate-Permeability Gas Reservoir

Liu, Tianyu (Texas A&M University) | Marongiu-Porcu, Matteo (Economides Consultants) | Ehlig-Economides, Christine A. (Texas A&M University) | Economides, Michael J. (University of Houston)

OnePetro 

Transverse fractures created from horizontal wells are a common choice in tight and shale gas reservoirs. Previous work has shown that proppant pack permeability reduction due to non-Darcy flow in a transverse fracture from a horizontal well causes significant reduction in the fracture performance when the gas formation permeability exceeds 0.5 md. There are other configurations and architectures such as aligning the well trajectory with the fracture, either by drilling horizontal wells in the direction that results in longitudinal fractures or by just sticking with drilling vertical wells. However, when drilling and fracturing costs are considered, productivity is not the only optimization consideration.

The field example illustrates a case when the apparent choice to use transverse fractures from horizontal wells proved to be suboptimal from the productivity perspective, but fundamental considering economics. Parametric studies for permeability ranging from 0.01 to 5 md illustrate the importance of economics in addition to physical performance. For similar reservoir characteristics, the optimum fractured well architecture varies considerably, and therefore an extensive reservoir engineering approach may be necessary beyond the well completions and/or current prejudices and inadequate understanding.