Applications of Artificial Neural Networks in the Petroleum Industry: A Review

Alkinani, Husam H. (Missouri University of Science and Technology) | Al-Hameedi, Abo Taleb T. (Missouri University of Science and Technology) | Dunn-Norman, Shari (Missouri University of Science and Technology) | Flori, Ralph E. (Missouri University of Science and Technology) | Alsaba, Mortadha T. (Australian College of Kuwait) | Amer, Ahmed S. (Newpark Technology Center/ Newpark Drilling Fluids)

OnePetro 

Oil/gas exploration, drilling, production, and reservoir management are challenging these days since most oil and gas conventional sources are already discovered and have been producing for many years. That is why petroleum engineers are trying to use advanced tools such as artificial neural networks (ANNs) to help to make the decision to reduce nonproductive time and cost. A good number of papers about the applications of ANNs in the petroleum literature were reviewed and summarized in tables. The applications were classified into four groups; applications of ANNs in explorations, drilling, production, and reservoir engineering. A good number of applications in the literature of petroleum engineering were tabulated. Also, a formalized methodology to apply the ANNs for any petroleum application was presented and accomplished by a flowchart that can serve as a practical reference to apply the ANNs for any petroleum application. The method was broken down into steps that can be followed easily. The availability of huge data sets in the petroleum industry gives the opportunity to use these data to make better decisions and predict future outcomes. This paper will provide a review of applications of ANNs in petroleum engineering as well as a clear methodology on how to apply the ANNs for any petroleum application.

  Country: North America > United States (1.00)
  Industry: Energy > Oil & Gas > Upstream (1.00)
  Oilfield Places: