Evaluation Of EOR Techniques For Medium-Heavy Oil Reservoirs With a Strong Bottom Aquifer In The South Of Oman.

Brooks, David (Shell Intl. E&P Co.) | De Zwart, Albert Hendrik (Shell Intl. E&P Co.) | Bychkov, Andrey (Shell) | Azri, Nasser (Shell International EP) | Hern, Carolinne (Shell) | Al Ajmi, Widad (Petroleum Development Oman) | Mukmin, Mukmin (Petroleum Development Oman)

OnePetro 

This paper describes the search for viable EOR techniques for a medium-heavy oil reservoir with high permeability and a strong bottom aquifer in south Oman. Horizontal production wells drilled at the top of the oil column yield high (commercial) initial oil rates however, they suffer fast water breakthrough and subsequent oil production is at high water cut. Given the poor primary oil recovery, these reservoirs are candidates for EOR as a means by which to improve the ultimate recovery. However, determination of the most appropriate process is non-trivial as field characteristics pose a significant challenge to most EOR schemes. These challenging characteristics include an oil column of around 40m, a large and strong bottom aquifer, sustained high reservoir pressure (100bar) and medium-high oil viscosity (250 to 500cP).

Three EOR techniques were identified as potentially feasible, both in terms of increasing ultimate recovery and their practical implementation; in-situ combustion (ISC), high-pressure steam injection (HPSI) and polymer flooding. None of the three processes are conventionally prescribed for reservoirs such as these and modifications to the basic processes were imperative. ISC is generally applied to thin, confined and dipping sands in the absence of bottom water. Steam injection is normally applied at low reservoir pressure and polymer is normally applied to oils with viscosity less than 150cP.

The paper describes a fully integrated evaluation of these EOR processes. Comparison is made in terms of simulated incremental recovery, economics, energy requirements and CO2 footprint, target volume and the practicality of implementation in a brown field. Against these metrics, polymer flooding is shown to be the best option.