Preston New Road: The Role of Geomechanics in Successful Drilling of the UK's First Horizontal Shale Gas Well

Clarke, Huw (Cuadrilla Resources Ltd) | Soroush, Hamed (Petrolern LLC) | Wood, Thomas (Cuadrilla Resources Ltd)

OnePetro 

Abstract

The Bowland Basin in Northern England contains a thick shale gas section (>5,000 ft) estimated to hold over 1300 TCF of total original gas in place of shale gas resource. In 2017, Cuadrilla Resources drilled a S-shaped pilot well, Preston New Road-1 (PNR-1), located in Lancashire, NW England. The plan was to drill, core, and log the Bowland Shale sequence with the primary objective to select the optimum landing depth for a subsequent side-tracked horizontal section (PNR-1z) of up to 3,280 ft length to be completed for multi-stage hydraulic fracturing. Another multi-stage horizontal well, PNR2, was also planned to be drilled afterward targeting a different stratigraphic horizon. Three vertical wells (PH-1, GH-1 and BS-1) were previously drilled in the Bowland Basin to a depth of 8,860-10,500 ft. Delays were encountered in the drilling of these wells due to multiple borehole stability problems. Specifically, in GH-1, the well required a side-track to reach the target depth. With the plan to drill four horizontal wells at Preston New Road, the first horizontal wells ever to be drilling in the Bowland shale, a rigorous geomechanical study was required to provide valuable insights for optimisation of the drilling programme.

A pre-drill geomechanical model was developed for the PNR-1 pilot well using advanced interpretation of available data and the gained experiences from the offset wells. A comprehensive pore pressure interpretation showed that Bowland shale is significantly over-pressured (0.69 psi/ft). The model was backed up by the observed splintery cuttings and gas shows in offset wells. It was concluded that this abnormal pore pressure combined with a tectonic strike-slip stress regime (with large horizontal stress anisotropy) and intrinsic anisotropic shale properties were the primary causative factors for drilling incidents. As a result of this study, the PNR-1 was successfully drilled and completed with minimal borehole stability problems despite the presence of narrow operating mud weight window in several stratigraphic intervals. The data acquisition program conducted included 114m of core from Upper and Lower Bowland shales, with the required logs for updating the geomechanical model. A comprehensive rock mechanics testing program was designed and conducted which resulted in better characterizing the anisotropic elastic properties and strength parameters of the Bowland Shale. This information was used to update the geomechanical model and aid the optimum landing decision depth of 2,180m for PNR-1z. A successful XLOT prior to drilling the 6" lateral section provided valuable data for further calibration of the stress model. The updated model was then used to develop safe operating mud weight window for PNR-1z, which helped drilling of the horizontal section to the TD at 11,233 ft MD (7,457 ft TVD) with no notable drilling problems.

This paper presents a summary of the geomechanical work performed for successful drilling and hydraulic fracturing operations in the Preston New Road exploration site and the outcomes and achievements.