Making EOR an Integral Part of the Redevelopment Strategy of a Matured Offshore Oilfield

Tewari, Raj Deo (Petronas Carigali Sdn Bhd) | Bui, Thang (Schlumberger) | Sedaralit, Mohd Faizal (PETRONAS) | Kittrell, Chuck M (Schlumberger IPM-RMG) | Riyadi, Slamet (Petronas Carigali Sdn Bhd) | Rahman, Hibatur (Petronas Carigali Sdn Bhd)

OnePetro 

This paper discusses about the optimization study of applying the enhanced oil recovery technique in a multilayered mature offshore oilfield. This field is located at water depth 65-70 m. There is significant variation in rock and fluid properties from top to bottom in the field. Upper sands are highly porous and permeable, poorly consolidated and hold viscous oil.Whereas lower formations are fully consolidated and contain lighter oil with a high GOR. Oil in most of these reservoirs are under- saturated. The field is under primary production for the last 30 years with appropriate sand control and artificial lift measures.

Production performance indicates that current development strategy and practices will yield a moderate recovery lower than average recovery in Malay basin fields. A comprehensive reservoir characterization has been carried out to capture the reservoir heterogeneity and multiple realizations of reservoir properties distribution have been used to understand the major uncertainties of the field. Performance analysis combined with simulation modeling identified a suitable EOR application with appropriate well spacing to maximize the drainage of undrained oil while improving the sweep from partially drained portions of the reservoirs. Since the field is in mature stage of the producing life, delaying the enhanced oil recovery application may not be a sound strategy for maximizing the recovery. Improving the well density and applying EOR should be part of a redevelopment strategy. Exhausting the option of primary production and then embarking on enhanced oil recovery application may be detrimental in maximizing the value of the asset. Water alternating gas injection (WAG) in immiscible mode has been firmed up for improving the oil recovery from this offshore field. The improvement in recovery due to WAG injection is attributed to contact of the upswept zones and modification of residual oil saturations and targeting the attic oil. The combination of water and gas injection in WAG improves the microscopic displacement efficiency and increases the mobile oil saturation. Hysteretic effects which change saturation paths, due to sequential injection of water and gas, additionally improve the recovery. Thus the combined effect of water and gas injection in improving the recovery in WAG is better as compared to separate gas or water injection. Three phase flow (oil, water and gas) is better in displacing the residual oil compared to two phase flow water and oil or gas and oil.

One of the major challenges envisaged in the application of EOR in a multilayered reservoir with very large thickness is poor conformance of injectants. This is critical for the success of the process. Parameters which are critical for impacting the WAG enhanced oil recovery process are studied thoroughly. The study suggests that improving the well spacing and proper injection volume with good conformance control and timely initiation of the process would result into an improvement of recovery factor on the order of 8-10%. The paper also discusses the laboratory results of mechanism of formation damage with water injection and rock-fluid interaction.