Kaombo Field Thermal Performance Test; A New Reference

Rolland, Julien (Total E&P) | Henneuse, Xavier (TechnipFMC / Genesis) | Balagué, Benoit (Total E&P) | Jackson, Mark (Independent Contractor)



The FPSO Kaombo Norte came on stream on July 27 2018, offshore Angola. When both its FPSOs will be at plateau, the biggest deep offshore project in Angola will account for 10% of the country's production. Kaombo reserves are spread over an 800-square-kilometer area. The development stands out for its subsea network size with more than 270 kilometers of pipeline on the seabed between 1500-2000 m water depth, including subsea production wells more than 25 km away from the production facility. Producing complex fluids within such a challenging environment required demanding thermal performance of the overall subsea asset with both the problematics of steady-state arrival temperature and cooldown. To do so, the transient thermal signature of every subsea component has been evaluated and correlated into a dynamic flow simulation to verify the integrity and therefore, safety of the system.

A unique design of subsea equipment aims to cover a large range of reservoir conditions. In order to tackle both risks of wax deposit during production and hydrates plug during restart, the whole system was designed to have a very low U-value and stringent cooldown requirements. A dedicated focus on having an extremely low U-value for the Pipe-in-Pipe (PiP) system enables to improve the global thermal performance. The accurate thermal performance predictions from computer modelling were firstly validated during the engineering phase with a full scale test. Eventually an in-situ thermal test was performed a few days before the first-oil to assess the as-built performance of the full subsea network. A well prepared procedure allowed to characterize precisely the subsea system U-value in addition to evaluate the cooldown time of critical components, after installation. The error band was properly assessed to take into account the difficulties of performing such remote measurements from an FPSO.

The different elements of the qualification procedure were successful, validating the demanding thermal requirement of the subsea system. The validation of the thermal performance of the flowline was fully achieved. Detailed analysis of the test results was performed in order to define precisely the U-value in operations. The as-built performance verification, including all elements of the complex subsea network, allowed to validate the optimized operating envelopes of the production system.

A detailed qualification process was conducted in order to fulfill one of the most challenging thermal requirements for a subsea development. Thanks to the precise prediction of the flowline insulation performance, the different reservoir conditions are safely handled. The operating envelope of the production system is finally optimized with the confidence from as-built performances confirmation.