Elemental Chemostratigraphy Provides Improved Understanding Of Reservoir Stratigraphy And Rock Properties For The Complex Najmah-sargelu Reservoir Of Umm Gudair Field, Kuwait

Ray, Dipak Singha (Kuwait Oil Company) | Al-Muraikhi, Rasha (Kuwait Oil Company) | Al-Khamees, Waleed Khamis (Kuwait Oil Company)

OnePetro 

Najmah-Sargelu Formations of Kuwait show considerable potential as a new unconventional hydrocarbon play and produces mainly from fractures. The key uncertainties which affect the productivity are the nature and distribution of permeable fracture networks, and the limits of oil accumulation.

This paper presents the results from whole-rock elemental analysis of three cored wells in UG field. The main objectives of this study are to use high-resolution elemental chemostratigraphy to gain a better understanding of the detailed stratigraphy and correlation of the Najmah-Sargelu Formations, to assess the chemo-sedimentology for determining the intervals of high organic content, to estimate the mineralogy of the sequence using an algorithm developed for an analog formation in North America; and to determine the most likely intervals to contain fractures, using a brittleness algorithm.

A clear chemo stratigraphic zonation is recognized within the Najmah-Sargelu Formation. The larger divisions are driven mainly by inherent lithological variation. The finer divisions are delineated by more subtle chemo stratigraphic signals (K2O/Th and Rb/Al2O3 ratios) and preservation of organic matter (high V, Ni, Mo, and U abundances). Zones of alternating brittleness and ductility are clearly identified within the interbedded limestones and marlstones of Najmah-Sargelu Formation.

Two unexpected but important features of the Najmah-Sargelu limestones were elucidated by the elemental data. Brittle, high-silica spiculites, with virtually no clay or silt, are more common than previously recognized from petrophysical logs and core descriptions in the upper Najmah limestones. In addition, the limestones adjacent to the spiculites tend to contain bitumen as pore-filling are recognized by the trace metal proxies. Ternary plots of V, Ni, and Mo differentiate the combinations of kerogen and bitumen present in the Najmah-Sargelu Formations.
The clarity and sensitivity of the chemostratigraphic signals are sufficient to enhance formation evaluation, and can also assist borehole positioning using the RockWiseSM ED-XRF instrument at wellsite.