Multilateral Multistage Hydraulic Fractured Offshore Wells; A New Trend in Completion Design and Optimization for More Effective Field Development

Bocaneala, Bogdan (OPECS) | Norris, Mark (OPECS) | Conrad, Joel (Packers Plus) | Tomlins, Andrew (OMV) | Bramald, James (Ithaca Energy) | Airnes, Jamie (Ithaca Energy)

OnePetro 

Abstract

Recently two multilateral horizontal wells have been completed offshore using dedicated multistage hydraulic fracturing completions. The first well, located in the Central North Sea (referred to as ML-CNS), was stimulated using acid fracturing; while the second well, located in the Black Sea (referred to as ML-BKS), was stimulated using proppant fracturing. This paper presents the different drivers, challenges and lessons learned for each well while emphasizing the well construction and stimulation methodologies developed for the different reservoirs and field characteristics.

The field development drivers for drilling and completing these offshore hydraulic fractured multilateral wells, a first of their kind globally, was different for each case. The objective of the first project, initially considered uneconomic, was to engineer a technical solution for completion and production of two separate reservoirs with only one subsea well. The second project was seeking to optimize infill drilling from the last available slot on the offshore platform to maximize reservoir contact and production in the same reservoir. ML-CNS was a TAML Level 2 completion with a 14-stage, 5 ½" multistage completion run in each lateral and set-up for sequential acid fracturing. Operationally, the first lateral was drilled and stimulated, followed by the drilling and stimulation of the second lateral, using the drilling whipstock to navigate through the multilateral junction. ML-BKS was a TAML Level 3 completion that had a 6-stage, 4 ½" multistage completion installed in each lateral, which were proppant fractured following a sequence designed to minimize the jack-up rig time required. Both legs were drilled and completed prior to starting the stimulation, access to either lateral was achieved with the existing workover unit on the platform by manipulating a custom designed BHA.

The lessons learned from the first project executed in the North Sea were able to be transferred and applied to the second project in the Black Sea to allow for a more efficient and confident completion solution. Led by varying economical and regional constraints, the key factor for both wells centered on delivering operationally simple and reliable multilateral completion designs to economically meet the field development strategy in place.

To the knowledge of the authors and following subsequent literature research, both wells are a worldwide first for an offshore multilateral well completed with multistage acid fracturing and multistage proppant fracturing, and together they represent a new trend in cost-effective offshore field development through well stimulation. The successful case studies for both wells with the combined analysis of the benefits, challenges, and lessons learned will provide a guide and instill confidence with operators who find this approach beneficial with a view to applying it in other assets.