Produced-Fluid Composition Redistribution in Source Rocks for Hydrocarbon-In-Place and Thermodynamic Recovery Calculations

Baek, Seunghwan (Texas A&M University) | Akkutlu, I. Yucel (Texas A&M University)

OnePetro 

Seunghwan Baek and I. Yucel Akkutlu, Texas A&M University Summary Source rocks, such as organic-rich shale, consist of a multiscale pore structure that includes pores with sizes down to the nanoscale, contributing to the storage of hydrocarbons. In this study, we observed hydrocarbons in the source rock partition into fluids with significantly varying physical properties across the nanopore-size distribution of the organic matter. This partitioning is a consequence of the multicomponent hydrocarbon mixture stored in the nanopores, exhibiting a significant compositional variation by pore size-- the smaller the pore size, the heavier and more viscous the hydrocarbon mixture becomes. The concept of composition redistribution of the produced fluids uses an equilibrium molecular simulation that considers organic matter to be a graphite membrane in contact with a microcrack that holds bulk-phase produced fluid. A new equation of state (EOS) was proposed to predict the density of the redistributed fluid mixtures in nanopores under the initial reservoir conditions. A new volumetric method was presented to ensure the density variability across the measured pore-size distribution to improve the accuracy of predicting hydrocarbons in place. The approach allowed us to account for the bulk hydrocarbon fluids and the fluids under confinement. Multicomponent fluids with redistributed compositions are capillary condensed in nanopores at the lower end of the pore-size distribution of the matrix ( 10 nm). The nanoconfinement effects are responsible for the condensation. During production and pressure depletion, the remaining hydrocarbons become progressively heavier. Hence, hydrocarbon vaporization and desorption develop at extremely low pressures. Consequently, hydrocarbon recovery from these small pores is characteristically low. Introduction Resource shale and other source-rock formations with significant amounts of organic matter, such as mudstone, siltstone, and carbonate, have a multiscale pore structure that includes fractures, microcracks, and pores down to a few nanometers (Ambrose et al. 2012; Loucks et al. 2012). The total amount of hydrocarbons stored is directly proportional to the amount of organic matter.