Identification of Fault Systems and Characterization of Structural Model: A Case Study from the Cretaceous Reservoir in the Giant Oil Field, Southern of Iraq

Al-Ali, Ali (Heriot Watt University) | Shams, Asghar (Basra Oil Company) | Stephen, Karl (Heriot Watt University)



The objective of this work is to characterize the fault system and its impact on Mishrif reservoir capacity in the West Quran oil field. Determination and modelling of these faults are crucial to evaluate and understanding fluid flow of both oil and water injection in terms of distribution and the movement. In addition to define the structure away from the well control and understanding the evolution of West Qurna arch over geologic time.

In order to achieve the aim of the work and the structural analysis, a step wise approach was undertaken. Primarily, intensive seismic interpretation and building of structure maps were carried out across the high resolution of 3D-seismic survey with focusing on the main producing Mishrif reservoir of the field. Also, seismic attributes volumes provided a good information about the distribution and geometry of faults in Mishrif reservoir. The next step, it constructs 3-D fault model which will be later merged into the developed 3D geological model. West Qurna/1 oil field situated within the Zubair Subzone, and it is structurally a part of large anticline towards the north. The observation of seismically derived faults near Mishrif reservoir indicated en-echelon faults which refer to strike-slip tectonics along with extensional faults. The statistic of Mishrif interval faulting indicates a big number faults striking north-south along western wedge of anticline. The seismic interpretation, in combination with seismic attributes volumes, deliver a valuable structural framework which in turns used to build a better geological model.

In this paper, the work demonstrates a better understanding for the perspectives on the seismic characterization of the structural framework in the Mishrif reservoir, and also for similar heterogeneous carbonate reservoirs. Further, this work will ultimately lead to improve reservoir management practises in terms of production performance and water flooding plan.