The Feasibility Appraisal for CO Injection and Storage in Condensate Gas Reservoir: Mechanism Studies and Case Analysis

Jia, Ying (Petroleum Exploration and Production Research Institute, SINOPEC) | Shi, Yunqing (Petroleum Exploration and Production Research Institute, SINOPEC) | Huang, Lei (Research Institute of Petroleum Exploration and Development, Petrochina) | Yan, Jin (Petroleum Exploration and Production Research Institute, SINOPEC) | Sun, Lei (SouthWest Petroleum University)

OnePetro 

Abstract

The YKL condensate gas reservoir is one of the biggest condensate gas reservoirs in China and has been developed more than 10years. At present, the combination of subdivision layer, production speed optimization and horizontal well drilling has been the key to economically unlocking the vast reserves of the YKL condensate gas. The primary recovery factor, however, remains rather low due to high capillary trapping and water invasion. While primary depletion could result in low gas recovery, CO2 flooding provides a promising option for increasing the recovery factor.

The objective of this work is to verify and evaluate the effect supercritical CO2 on enhancing gas recovery and analyze the feasibility of CO2 enhance gas recovery (CO2 EGR) of condensate gas reservoir.

Firstly, novel phase behavior experimental procedures and phase equilibrium evaluation methodology for gas-condensate phase system mixed with supercritical CO2 with high temperature were presented. A unique phase behavior phenomena was also reported. Then, CO2 floodingmechanism in condensate gas reservoir was analyzed and clarified based on experiments. Finally, a series of numerical simulation work were conducted as an effective and economical means to maximize natural gas recovery with the lowest CO2 breakthrough by varying strategies, including CO2 injection rate, injection composition, andinjection timing. Meanwhile the CO2 storage volumes of different strategies were calculated.

The results show that higher gas recovery factor can be achieved with CO2 injection through appearing interphase between two fluids, maintaining reservoir pressure, driving gas like "cushion" and controlling water invasion. All strategies have moderate to significant effects on gas production. The control of injection and production ratio needs to be balanced between pressure transient and CO2 breakthrough over the producer to obtain the maximum gas production. The varying injection pressure shows a positive effect of enhancing gas production. Numerical simulation indicated that the recovery of gas reservoir was improved by around 10 percent. The total CO2 storage would be around 30-40% HCPV.

The research showed that CO2 flooding presents a technically promising method for recovering the vast condensate gas while extensively reducing greenhouse gas emissions.