Saturation Exponent as a Function of Reservoir Heterogeneity and Wettability in the Tambaredjo Oil Field, Suriname

Acosta, Elias R. (Dunia Technology Solutions) | Nandlal, Bhagwanpersad (Staatsolie Maatschappij) | Harripersad, Ryan

OnePetro 

Abstract This research proposed an alternative method for determining the saturation exponent (n) by finding the best correlations for the heterogeneity index using available core data and considering wettability changes. The log curves of the variable n were estimated, and the effect on the water saturation (Sw) calculations and the Stock Tank Oil Initially In Place (STOIIP) in the Tambaredjo (TAM) oil field was analyzed. Core data were employed to obtain the relationship between n and heterogeneity using cross-plots against several heterogeneity indices, reservoir properties, and pore throat size. After filtering the data, the clay volume (Vcl), shale volume, silt volume, basic petrophysical property index (BPPI), net reservoir index, pore grain volume ratio, and rock texture were defined as the best matches. Their modified/improved equations were applied to the log data and evaluated. The n related to Vcl was the best selection based on the criteria of depth variations and logical responses to the lithology. The Sw model in this field showed certain log readings (high resistivity [Rt] reading ≥ 500 ohm.m) that infer these intervals to be probable inverse-wet (oil-wet). The cross-plots (Rt vs. Vcl; Rt vs. density [RHOB]; Rt vs. total porosity [PHIT]) were used to discard the lithologies related to a high Rt (e.g., lignites and calcareous rocks) and to correct Sw when these resulted in values below the estimated irreducible water saturation (Swir). The Sw calculations using the Indonesian equation were updated to incorporate n as a variable (log curves), comparing it with Sw from the core data and previous calculations using a fixed average value (n = 1.82) from the core data. An integrated approach was used to determine n, which is related to the reservoir’s heterogeneity and wettability changes. The values of n for high Rt (n > 2) intervals ranged from 2.3 to 8.5, which is not close to the field average n value (1.82). Specific correlations were found by discriminating Swir (Swir < 15%), (Swir 15%–19%), and Swir (> 19%). The results showed that using n as a variable parameter improved Sw from 39.5% to 36.5% average in the T1 and T2 sands, showing a better fit than the core data average and increasing the STOIIP estimations by 6.81%. This represents now a primary oil recovery of 12.1%, closer to the expected value for these reservoirs. Although many studies have been done on n determination and its effect on Sw calculations, using average values over a whole field is still a common practice regardless of heterogeneity and wettability considerations. This study proposed a method to include the formation of heterogeneity and wettability changes in n determination, allowing a more reliable Sw determination as demonstrated in the TAM oil field in Suriname.

Duplicate Docs Excel Report

Title
None found

Similar Docs  Excel Report  more

TitleSimilaritySource
Uncertainty Quantification by Monte Carlo Simulation of Lab-Derived Saturation Data from Sponge Cores0.997OnePetro