Timing of ASP Injection for Viscous Oil Recovery

Aitkulov, Almas (The University of Texas at Austin) | Mohanty, Kishore K. (The University of Texas at Austin)



Alkaline-surfactant-polymer (ASP) flooding of a viscous oil (100 cp) is studied here in a two-dimensional (2D) sand pack. An ASP formulation was developed by studying the phase behavior of the oil with several alkaline-surfactant formulations. The effectiveness of the ASP formulation was validated in a 1D sand pack by conducting a water flood followed by a stable ASP flood. Reservoir sand was then packed into a 2D square steel cell similar to a quarter five-spot pattern. Several ASP floods were then conducted in this 2D cell to study both the displacement and sweep efficiency of ASP floods. First, the polymer concentration was varied to find an optimum polymer concentration. Then the waterflood extent was varied (0–1 PV) after which the ASP flood was initiated. The oil recovery, oil cut, effluent concentration and pressure drop were monitored during the floods. The tertiary ASP flood was very effective in 1D and validated the ASP formulation. The 2D tertiary ASP flood also recovered most of the oil (~98% of OOIP) when the ASP slug viscosity exceeded the oil viscosity, but the pressure gradients were high at ~ 1ft/d injection. When the ASP slug viscosity was lowered to ~1/3 of oil viscosity, oil recovery dropped slightly to 90% OOIP. However, it also decreased the pressure gradient 5 times, which would give good flow rates in the field conditions. As the extent of waterflood preceding ASP got shorter, the oil was recovered faster (for the same pore volumes injected), but the pressure gradient was higher for the ASP flood than the water flood. The ultimate recovery was independent of the extent of waterflood.