Rhenium-Osmium Geochronology and Geochemistry of the Permian Brushy Canyon Formation: Investigating the Controls of Re and Os Abundances in Organic-Rich Shales and the Evolution of Permian Seawater

Wright, Shawn (Hess Corporation) | Brandon, Alan (University of Houston) | Casey, John (University of Houston)

OnePetro 

Abstract

Organic-rich mudrocks (ORM) from the Brushy Canyon Formation in west Texas were deposited in the Middle Permian during the Guadalupian epoch in the Delaware Basin. Brushy Canyon ORM were examined for Re-Os isotope systematics with a goal of constraining their depositional age, the 187Os/188Os value of seawater at their time of deposition, and to examine how Re and Os partition into organic material in ORM. For these samples, Rock-Eval pyrolysis data (HI: 228-393 mg/g; OI: 16-51 mg/g) indicates predominantly Type II marine kerogen with minor contributions of Type III terrestrial organic matter. Rhenium and osmium abundances correlate positively with HI, and negatively with OI, which are proxies for organic matter type and degree of preservation. These data are consistent with previous work that indicates Re and Os abundances are controlled by the availability of chelating sites in the kerogen. Brushy Canyon Formation samples have (total organic carbon) TOC values between 0.97 and 4.04% and show a strong positive correlation with both Re and Os abundances, consistent with correlations between these parameters in other ORM suites. The positive slopes in these correlations are distinct between marine (higher slopes) and non-marine (lower slopes) lacustrine environments of deposition. The Brushy Canyon’s steep slopes are consistent with marine deposition of its organic matter and an open-ocean non-restricted setting. The relationship to other Re-Os and TOC data sets appears to be a function of the restrictivity of marine conditions, and associated variations in reducing conditions during ORM accumulation of the Delaware Basin compared with more restricted lacustrine basins with local drawdown of Re and Os.

The Re-Os isotope systematics of ORM from the Brushy Canyon Formation yields a Model 1 age of 261.3 ± 5.3 Ma (2.0% age uncertainty; MSWD = 0.82). Within the uncertainty, this agrees with the expected Guadalupian age for this formation. This Re-Os age represents the first direct, absolute age for Guadalupian organic matter in the Delaware Basin. The initial (187Os/188Os)i = 0.50 ± 0.06 obtained by isochron regression represents the 187Os/188Os of seawater at this time. This value is significantly less radiogenic than modern day seawater (~1.06). The lower 187Os/188Os of Guadalupian seawater recorded is likely caused by a decrease in the relative flux of radiogenic Os from continental weathering due to a number of local and global climatic and tectonic changes that were occurring during this time.

  Country: North America > United States (1.00)
  Geologic Time: Phanerozoic > Paleozoic > Permian > Guadalupian (1.00)
  Industry: Energy > Oil & Gas > Upstream (1.00)