Integrated Detection of Water Production in a Highly Heterogeneous and Tight Formation Using CRM Model: A Case Study on Water Flooding Gaither Draw Unit, Wyoming, USA

Liu, Kailei (China University of Geosciences) | Wu, Xingru (University of Oklahoma) | Ling, Kegang (University of North Dakota)

OnePetro 

Abstract

Gaither Draw Unit is a heterogeneous and tight formation with an average permeability less than 0.1 mD. After more than 1.7 MMSTB water injection, there was no clear indication or benefit of the injected water from any producer. However, knowing the distribution of the injected water is critical for future well planning and quantifying the efficiency of injection. The objective of this study is to show how the Capacitance-Resistance Model (CRM) was used on this field and validated using other independent methods.

The CRM model describes the connectivity and the degree of fluid storage quantitatively between injectors and producers from production and injection rates. Rooted in material balance, signals from injectors to producers can be captured in the CRM. Using constrained nonlinear multivariable optimization techniques, the connectivity is estimated in the selected portion of the field through signal analysis on injection and production rates. In this tight formation, the whole field is divided into seven regions with one injection well and surrounding producers to conduct CRM analysis. We further use integrated but independent approaches to validate the results from CRM. The validation includes full field modeling and history match and fluid level measurement using echometering technology.

This paper focuses on a real field water flooding project in Gaither Draw Units(GDU). CRM is used to detect reservoir heterogeneity through quantifying communication between injectors and producers, and attains a production match. The fitting results of connectivity through CRM indicate permeability regional heterogeneity, which is consistent with full field modelling. The history matched full field model presents the saturation distribution showing that the majority of injected water mainly saturates the surrounding regions of injectors, and the low transmissibility slows down the pressure dissipation. Overall, the comprehensive interpretation obtained through these three independent methods is consistent, and is very useful in planning infill well drilling and future development plan for the Gaither Draw Units.

This paper shows that it is critical to integrate different sources of data in reservoir management through a field case study. The experience and observations from this asset can be applied to other tight formations being developed with water flooding projects.