Machine Learning Applied to 3D Seismic Data from the Denver-Julesburg Basin Improves Stratigraphic Resolution in the Niobrara

Laudon, Carolan (Geophysical Insights) | Stanley, Sarah (Geophysical Insights) | Santogrossi, Patricia (Geophysical Insights)

OnePetro 

Abstract

Seismic attributes can be both powerful and challenging to incorporate into interpretation and analysis. Recent developments with machine learning have added new capabilities to multi-attribute seismic analysis. In 2018, Geophysical Insights conducted a proof of concept on 100 square miles of multi-client 3D data jointly owned by Geophysical Pursuit, Inc. (GPI) and Fairfield Geotechnologies (FFG) in the Denver-Julesburg Basin (DJ). The purpose of the study was to evaluate the effectiveness of a machine learning workflow to improve resolution within the reservoir intervals of the Niobrara and Codell formations, the primary targets for development in this portion of the basin.

The seismic data are from Phase 5 of the GPI/Fairfield Niobrara program in northern Colorado. A preliminary workflow which included synthetics, horizon picking and correlation of 28 wells was completed. The seismic volume was re-sampled from 2 ms to 1 ms. Detailed well time-depth charts were created for the Top Niobrara, Niobrara A, B and C benches, Fort Hays and Codell intervals. The interpretations, along with the seismic volume, were loaded into the Paradise® machine learning application, and two suites of attributes were generated, instantaneous and geometric. The first step in the machine learning workflow is Principal Component Analysis (PCA). PCA is a method of identifying attributes that have the greatest contribution to the data and that quantifies the relative contribution of each. PCA aids in the selection of which attributes are appropriate to use in a Self-Organizing Map (SOM). In this case, 15 instantaneous attribute volumes, plus the parent amplitude volume, were used in the PCA and eight were selected to use in SOMs. The SOM is a neural network-based machine learning process that is applied to multiple attribute volumes simultaneously. The SOM produces a non-linear classification of the data in a designated time or depth window.

For this study, a 60-ms interval that encompasses the Niobrara and Codell formations was evaluated using several SOM topologies. One of the main drilling targets, the B chalk, is approximately 30 feet thick; making horizontal well planning and execution a challenge for operators. An 8 X 8 SOM applied to 1 ms seismic data improves the stratigraphic resolution of the B bench. The neuron classification also images small but significant structural variations within the chalk bench. These variations correlate visually with the geometric curvature attributes. This improved resolution allows for precise well planning for horizontals within the bench. The 25 foot thick C bench and the 17 to 25 foot thick Codell are also seismically resolved via SOM analysis. Petrophysical analyses from wireline logs run in seven wells within the survey by Digital Formation; together with additional results from SOMs show the capability to differentiate a high TOC upper unit within the A marl which presents an additional exploration target. Utilizing 2d color maps and geobodies extracted from the SOMs combined with petrophysical results allows calculation of reserves for the individual reservoir units as well as the recently identified high TOC target within the A marl.

The results show that a multi-attribute machine learning workflow improves the seismic resolution within the Niobrara reservoirs of the DJ Basin and results can be utilized in both exploration and development.

  Country: North America > United States (1.00)
  Geologic Time: Phanerozoic > Mesozoic > Cretaceous (0.94)
  Industry: Energy > Oil & Gas > Upstream (1.00)