Designing and Injecting a Chemical Formulation for a Successful Off-Shore Chemical EOR Pilot in a High-Temperature, High-Salinity, Low-Permeability Carbonate Field

Levitt, David (Total) | Klimenko, Alexandra (Total) | Jouenne, Stephane (Total) | Passade-Boupat, Nicolas (Total) | Cordelier, Philippe (Total) | Morel, Danielle (Total) | Bourrel, Maurice (Total)


This article describes the formulation design, optimization, implementation, and lessons learned leading up to a successful 1-spot surfactant-polymer (SP) pilot in the Middle East. The target field is a high-temperature, high-salinity, low-permeability carbonate, and thus presents both great challenges and great potential for the application of chemical EOR technology. A surfactant-polymer (SP) formulation was optimized for these conditions based upon a novel, hydrophilicity-enhanced molecule for high-temperature, high-salinity reservoirs synthesized by Total R&D labs. Thermal stability tests, over 5000 microemulsion pipette tests, and more than 40 corefloods were performed during the screening and optimization process leading up to the 1-spot SP pilot. Additionally, a novel method was developed to optimize polymer molecular weight distribution, in order to decouple in-situ viscosity from near-wellbore injectivity. The final formulation consists of a 0.4 pore volume (PV) SP slug of 1.35% active surfactant, plus 1% clarifier, and SAV-225 polymer (SNF Floerger) in a 80 g/l brine corresponding to a hypothetical softened mixture of seawater and local aquifer water. This is followed by a polymer drive of AN-125 polymer (SNF Floerger) in softened seawater, such that a negative salinity gradient is imposed between the 230 g/l formation brine, 80 g/l SP slug, and 42 g/l seawater. The formulation was designed and implemented without need for a preflush.