Case for Vertical Hydrocarbon Migration: Case Studies, Southeast Asia Tertiary Basins

Christopher, Geovani (Halliburton)



Complex hydrocarbon distributions where reservoirs are filled by oil and gas phases with different densities and genetic types interfingering within a basin are a common phenomenon in Southeast Asia and are often attributed to vertical migration. Attempts to understanding the controlling factors of vertical hydrocarbon migration by modeling the hydrocarbon charging and entrapment history from two Cenozoic basins in Southeast Asia—West Java and the Madura Platform—are discussed.

A modified invasion percolation algorithm was used to simulate the secondary migration models, which follows the principle that migration occurs in a state of capillary equilibrium in a flow regime dominated by buoyancy and capillary forces. Three-dimensional (3D) seismic data were used as the base grid for migration simulation to capture the effect of both structure and facies variations on fluid flow.

Two models, one from the West Java Basin (fault-bounded structure) and the East Java Basin (nonfault-bounded structure), are presented. For both cases, interfingering between oil and gas occurred, with most oils trapped within the lower formations, a mixture of oil and gas dominates the middle formations, and mostly gas in the upper formation. These vertical arrangements are possible because of the relatively weak formational seals within the basin. For vertically distributed reservoirs, oil is often trapped within the lower interval, and gas is trapped at the upper interval. For a basin dominated by a vertical migration regime, the potential risk for hydrocarbon lateral travel far away from the kitchen is high, thus increasing the potential risk of prospectivity away from the kitchen. Understanding factors that help control vertical migration also help geologists better understand hydrocarbon distributions within the basins.

Case studies during which modeling helped determine the factors that influenced vertical hydrocarbon migration and the resulting potential phase distribution prospectivity risks in the studied basins are discussed.