Water-Oil Emulsions with Fines in Smart Water Enhanced Oil Recovery

Arshad, Muhammad Waseem (Technical University of Denmark DTU, DTU Chemical Engineering, Center for Energy Resources Engineering, Søltofts Plads 229, DK-2800 Kongens Lyngby) | Loldrup Fosbøl, Philip (Technical University of Denmark DTU, DTU Chemical Engineering, Center for Energy Resources Engineering, Søltofts Plads 229, DK-2800 Kongens Lyngby) | Shapiro, Alexander (Technical University of Denmark DTU, DTU Chemical Engineering, Center for Energy Resources Engineering, Søltofts Plads 229, DK-2800 Kongens Lyngby) | Thomsen, Kaj (Technical University of Denmark DTU, DTU Chemical Engineering, Center for Energy Resources Engineering, Søltofts Plads 229, DK-2800 Kongens Lyngby)

OnePetro 

Abstract

Smart water flooding is an advanced method for enhanced oil recovery (EOR) in which the composition of injected brine is altered by varying the concentration of selected ions that can increase the oil recovery from various carbonate reservoirs. Besides wettability alteration mechanism, the formation of water-soluble oil emulsions has been reported as a possible reason to explain the observed increase in oil recovery using smart water. The formation of water-soluble oil emulsions takes place on the interaction of insoluble salts (fines) with oils. However, the interaction of these fines with the crude oil is not very well studied for carbonate reservoirs. This work presents emulsion formation in water-oil systems in the presence of water-insoluble fines. The effect of amount of fines on emulsion formation is also examined.

Synthetic seawater (SSW) and deionized water (DIW) were used as water phase, two model oils (decane (D) and 1:1 vol. ratio of hexane-hexadecane (HH) mixture) and North Sea crude oil (NSCO) were used as oil phase, and fines of CaCO3 (≤ 30 µm) and CaSO4 (≈ 44 µm) were used as solid phase. Branson Sonifier® SFX250 was used for emulsion formation (based on the principle of ultrasonic processing). All the experiments were performed for the same conditions of 5 minutes of ultrasonic processing at an output power of 30 W by using 6.5 mm tapered microtip (sonication probe). Emulsion characterization was done by using an optical microscope (Axio Scaope.A1).

Several combinations of water-oil-fines were tested. The tests consisted of control experiments (in which only water-oil without any fines were tested) and water-oil-fines experiments. In the control experiments (without fines), SSW did not show any tendency to emulsify neither with the model oils nor with NSCO. However, DIW showed clear tendency to emulsify with model oils and NSCO. Amongst model oils, DIW emulsified with HH better compared to decane. Similar results were observed in the water-oil-fines experiments. SSW did not form any emulsion with the model oils in the presence of fines of CaCO3 and CaSO4. However, significant amounts of emulsion formation were observed when DIW was sonicated with model oils and fines. HH formed more emulsions compared to decane. For NSCO case, both SSW and DIW formed a significant amount of emulsions with both types of fines (CaCO3 and CaSO4). An increase in amount of fines showed an increase in emulsion formation and a better emulsion stabilization. Sonication is a quick and reliable technique to screen out emulsion formation in different combinations of water-oil-fines.

This work will further develop our understanding of emulsion formation in the water-oil-fines systems.