A Novel X-Ray Based High Pressure Mass Flow Rate Sensor for MPD Operations

Singhal, Vivek (University of Texas at Austin) | Ashok, Pradeep (University of Texas at Austin) | Oort, Eric van (University of Texas at Austin) | Park, Paul (Weatherford International Inc.)



Managed Pressure Drilling (MPD) allows one to drill through formations with narrow pressure windows, thereby making those formations that cannot be drilled with conventional techniques accessible. It also provides the capability for early detection and safer handling of well control events. This technique requires accurate estimation of the annular pressure profile and the delta mass flow rate. These measurements can be improved through accurate density and mass flow rate measurement at the high pressure (7500 psi) input side of the well. Since no good metering technologies exist to make these measurements, the objective was to develop a high pressure density and mass flow rate sensor.

A comprehensive review of all existing flow rate and density measurement instruments suggested that an X-ray based sensor was the best option for the high pressure fluid line. Multiple experiments were conducted to determine the electrical power range (voltage and power) for the X-ray tube that would work best for mud between densities in the range of 8 to 20 ppg. Experiments were then conducted to test the accuracy and feasibility of techniques developed for density and volumetric flow rate measurement. Based on these experiments, an X-ray source and detector were identified and a sensor was designed for inline use on 4 inch pipes. Two approaches were developed to estimate density using the sensor. The first was an empirical approach where sensor gray level values were directly mapped onto mud density values though in laboratory experiments. These mappings can then be used in the field to estimate density. The second was a model-based approach that estimates density based on the Beer Lambert's law. Both these approaches were tested experimentally using drilling muds of different densities and compositions.

A mechanism that uses X-rays to determine volumetric flow rate was also designed and tested using both simulations and experiments. A real-time calibration subsystem had to be added to the sensor to preserve measurement accuracy and precision over time. Based on encouraging results from simulations and experiments, a laboratory prototype was built and is currently undergoing flow loop tests. This is the first time an X-ray mass flow rate measurement sensor has been designed to be used on high pressure lines. Preliminary findings indicate that no existing sensors used for similar applications can match the measurement accuracy and frequency that may be offered by this technology. Development of this sensor would improve the safe drilling of complex wells with narrow drilling windows.