Enhanced Type Curve Development Using Date-Dependent Well Spacing Analysis

Sharma, Akash (Enverus) | Burleson, Justin (Enverus)

OnePetro 

Abstract

Field development strategies in unconventional shale reservoirs have increased in intensity over the last few decades. Completion design and well spacing have been key focus variables in the incremental design process. With this wide range of design and development strategies, assets across different basins might end up with wells from a variety of design generations. This could make type curve creation even more complicated as it does not account for impact of hydrocarbon drainage in an area by the older (parent) well on the newer (child) wells. The present paper tackles this issue by addressing type curve development by including date dependent spacing variables to account for the dynamism of field development strategies over the years.

The present paper analyzes the impact of well spacing on type curve development in an asset. Type curve generation is a critical component in evaluation and subsequent planning so de-risking this step is very valuable. A lot of the analysis done in recent years is by considering well spacing as a static variable. The present analysis looks at spacing as a dynamic variable instead to account for time-series based variations. The spacing in the estimation process is also a 3-D spacing algorithm which identifies multiple points along the lateral section of the wellbore for a true evaluation of pressure transient propagation.

The present analysis showed the impact of date dependent well spacing on type curve development. The underestimation of well spacing in well-developed acreages was brought to attention as spacing mean deviations of upto 0.7 Standard Deviation were found between current well speacing and date-dependent well spacing scenarios analyzed. These deviations led to the type curves having upto a 40% EUR differential between estimation processes, with PV10 differentials higher than 100% in some cases. While the degree of impact of time series well spacing varied across the assets evaluated, quantifying the risk in type curve development and subsequent EUR estimation were key conclusions from the analysis.

The present paper presents a novel approach in tackling type curve development for parent and child wells observed across different basins. The paper provides guidelines on creating highly accurate type curves and highlights errors that may arise due to high well density and inter-well interaction by conducting the analysis in the high well density Middle Bakken formation.