Additional-Perforations and Infill Wells Based on Multiple Contacts & Saturation Logging Results: A Case Study

Abdulhadi, Muhammad (Dialog Group Berhad) | Kueh, Pei Tze (Dialog Group Berhad) | Abdul Aziz, Shahrizal (Dialog Group Berhad) | Mansor, Najmi (Dialog Group Berhad) | Tran, Toan Van (Dialog Group Berhad) | Chin, Hon Voon (Dialog Group Berhad) | Jacobs, Steve (Halliburton Energy Services) | Muhd. Fadhil, Imran (PETRONAS Carigali Sdn. Bhd.) | Suggust, Alister Albert (PETRONAS Carigali Sdn. Bhd.) | Usop, Mohammad Zulfiqar (PETRONAS Carigali Sdn. Bhd.) | Ralphie, Benard (PETRONAS Carigali Sdn. Bhd.) | Dolah, Khairul Arifin (PETRONAS Carigali Sdn. Bhd.) | Abdussalam, Khomeini (PETRONAS Carigali Sdn. Bhd.) | Munandai, Hasim (PETRONAS Carigali Sdn. Bhd.) | Yusop, Zainuddin (PETRONAS Carigali Sdn. Bhd.)



It is a common practice to run a contact-saturation log to confirm the oil column prior to oil gain activities such as adding perforations or infill drilling. From 2012 to 2017, a total of eight logging jobs were executed in Field B which were subsequently followed by oil gain activities.

The eight contact-saturation logging jobs were comprised of pulse-neutron logs in both carbon-oxygen (C/O) and sigma mode. The logs were run in varied well completions targeting thirteen different zones. Four logs were run in single tubing strings while the remaining four were in dual string completions. Certain target zones were already perforated while others had completion accessories such as a blast joint or integrated tubing-conveyed perforating (iTCP) guns across them. Eight of the target zones were later add-perforated while two were used to mature infill well targets.

Four of the seven add-perforations results were consistent with the logging results. One of the successful logs clearly indicated that the oil column had migrated into the original gas cap. Of the two infill wells drilled, only one was successful. These case studies in Field B indicate that in conditions of open perforations, trapped fluid across the annulus, and in low resistivity sand, distinguishing between original and residual saturation is difficult with pulse-neutron log. The log measurement was significantly affected. The most obvious lesson learned was that perforating and producing the reservoir would be the best method to confirm the potential oil gain. From a value point of view, it would have been more economical to perforate the zone straightaway if the oil gain activity had similar cost to the logging activity. The lessons learned also helped to establish clear guidelines in Field B on utilizing contact-saturation logs in the future.

The paper seeks to present the logging results, subsequent oil gain activities, and lessons learned from the contact-saturation logging in Field B. These lessons learned will be applicable in other oilfields with similar conditions to improve decision making in the industry.