Unique Process and Tool Provides Better Acid Stimulation and Better Production Results

Al Hamad, Abdullah (Halliburton) | Abdul-Razaq, Eman (KOC) | Al Bahrani, Hasan (KOC) | Surjaatmadja, Jim Basuki (Halliburton) | Bouland, Ali (Kuwait Oil Company) | Turkey, Naween (KOC) | Brand, Shannon (Halliburton) | Al-Saqabi, Mishari Bader (Kuwait Oil Company) | Al-Zankawi, Omran (Kuwait Oil Company) | Vishwanath, Chimmalgi (KOC) | Gazi, Naz H. (Kuwait Oil Company)

OnePetro 

There are many ways to stimulate an unlined openhole horizontal well using acid. The simplest way is to just pump acid into the well (i.e., bullhead) without placement control. However, this can often be ineffective. Although still used, such approaches can create massive enlargements at the entry point or high injectivity area, thus causing ineffective treatments and re-entry issues. Wellbore collapse often follows. The use of coiled tubing (CT) as a "pin-point?? delivery method is therefore preferred. Using CT allows dispersal of the acid either uniformly or intermittently along the lateral, as desired. CT also allows acid washing to be performed, which is another common process that can improve stimulation without much additional expense to the operator. Using a jetting tool with many jets, acid can be sprayed onto the wellbore wall, and the active agitation caused by the acid-wash process increases the chemical reactivity of the acid at the desired locations.
Another beneficial approach of using CT is the hydrajet assisted acid fracturing (HJAAF) method. With focused jetting of acid at much higher pressures, the process initiates microfractures in the wellbore walls. When etched with acid, this approach effectively bypasses near-wellbore (NWB) damage much deeper than common washes, thus providing much better results. Further modification of the process by exerting high annular pressures offers the capability of delivering medium to large fractures.
This paper discusses two HJAAF processes uniquely combined into one process used in two large horizontal wells. Because of the large dimension of the inner diameter (ID) of the wells combined with the small production tubing the tool must pass through, the implementation had to be further improved by using a unique jetting mechanism, which positioned the jet nozzles closer to the target. Actual results of such stimulations are presented.