Reservoir Modeling and Production Performance Analysis to Investigate the Impacts of Reservoir Properties on Steam-Assisted Gravity Drainage in Cold Lake Oil Sands, Alberta

Wang, Zexuan (University of Alberta)



When compared with steam-assisted gravity drainage (SAGD) operations in the McMurray Formation, Athabasca Oil Sands, SAGD projects in the Clearwater Formation at Cold Lake did not perform as expected, likely because of reservoir properties. This paper will use the Orion SAGD case study to: (1) investigate the impacts of reservoir properties on the SAGD thermal efficiency by field evidences; (2) identify key geological parameters influencing each well pad; and (3) summarize major geological challenges for Orion SAGD expansion.

Wireline log data were interpreted to characterize reservoir properties, which were used to build 3D models. 3D visualizations and 2D cross sections of the reservoir revealed spatial distribution and heterogeneity of each property. SAGD production performance was analyzed using: (1) temperature profiles that monitored the growth of the steam chamber; (2) cumulative steam-oil ratios (CSORs); and (3) oil production rates (OPRates), which are direct indicators of thermal efficiency.

Results show that impermeable barriers and low-permeability zones were detrimental to steam injectivity and steam chamber growth, as observation wells in Pilot Pads 1 and 3 did not detect any steam saturation. High-permeability zones favored high steam injectivity and mobility, especially in Pad 105. Steam chambers were irregularly shaped by high shale-content zones, as two sharp spikes displayed on the temperature profile in Pad 103. Low oil-saturation zones and thin net-pays increased the CSORs, as seen in Pads 106 and 104. Impermeable barriers are almost horizontal, making no difference on well pad orientation by their dip angles. Lack of porosity variation made it difficult to identify the impact of porosity on each well pad.

The relatively extensive distribution of impermeable barriers between and above well pairs, as well as the relatively large area of low oil saturation and thin net-pay, were identified as major geological challenges.