Influence of Pressure Difference Between Reservoir and Production Well on Steam-Chamber Propagation and Reservoir-Production Performance

Xiong, Hao (University of Oklahoma) | Huang, Shijun (China University of Petroleum, Beijing) | Devegowda, Deepak (University of Oklahoma) | Liu, Hao (China University of Petroleum, Beijing) | Li, Hao (University of Oklahoma) | Padgett, Zack (Univiersity of Oklahoma)

OnePetro 

Hao Xiong, University of Oklahoma; Shijun Huang, China University of Petroleum, Beijing; Deepak Devegowda, University of Oklahoma; Hao Liu, China University of Petroleum, Beijing; and Hao Li and Zack Padgett, University of Oklahoma Summary Steam-assisted gravity drainage (SAGD) is the most-effective thermal recovery method to exploit oil sand. The driving force of gravity is generally acknowledged as the most-significant driving mechanism in the SAGD process. However, an increasing number of field cases have shown that pressure difference might play an important role in the process. The objective of this paper is to simulate the effects of injector/producer-pressure difference on steam-chamber evolution and SAGD production performance. A series of 2D numerical simulations was conducted using the MacKay River and Dover reservoirs in western Canada to investigate the influence of pressure difference on SAGD recovery. Meanwhile, the effects of pressure difference on oil-production rate, stable production time, and steam-chamber development were studied in detail. Moreover, by combining Darcy's law and heat conduction along with a mass balance in the reservoir, a modified mathematical model considering the effects of pressure difference is established to predict the SAGD production performance. Finally, the proposed model is validated by comparing calculated cumulative oil production and oil-production rate with the results from numerical and experimental simulations. The results indicate that the oil production first increases rapidly and then slows down when a certain pressure difference is reached. However, at the expansion stage, lower pressure difference can achieve the same effect as high pressure difference. In addition, it is shown that the steam-chamber-expansion angle is a function of pressure difference. Using this finding, a new mathematical model is established considering the modification of the expansion angle, which (Butler 1991) treated as a constant. With the proposed model, production performance such as cumulative oil production and oil-production rate can be predicted. The steam-chamber shape is redefined at the rising stage, changing from a fanlike shape to a hexagonal shape, but not the single fanlike shape defined by (Butler 1991). This shape redefinition can clearly explain why the greatest oil-production rate does not occur when the steam chamber reaches the caprock.

  Country: North America > United States (1.00)
  Industry: Energy > Oil & Gas > Upstream (1.00)
  Oilfield Places: